CLASSIFICATION OF FLAT PSEUDO-KAHLER SUBMANIFOLDS IN COMPLEX PSEUDO-EUCLIDEAN SPACES

被引:0
|
作者
Chen, Bang-Yen [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2011年 / 4卷 / 02期
关键词
Pseudo-Kahler submanifold; null isotropic submanifold; indefinite complex space form;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Calabi [1] gave a classification of Kahler imbeddings of complete, simply-connected definite complex space forms into complete, simply-connected definite complex space forms. The local version of Calabi's result was obtained by Nakagawa and Ogiue in [5]. In contrast, no classification results were known for pseudo-Kahler immersions between indefinite complex space forms. In this article, we initiate the study of the classification problem on pseudo-Kahler immersions between indefinite complex space forms. As a consequence, three classification theorems for pseudo-Kahler immersions between flat indefinite complex space forms are obtained.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [11] CONVEX SURFACES IN PSEUDO-EUCLIDEAN SPACES
    GUREVICH, VL
    DOKLADY AKADEMII NAUK SSSR, 1978, 240 (03): : 512 - 514
  • [12] Heisenberg model in pseudo-Euclidean spaces
    Božidar Jovanović
    Regular and Chaotic Dynamics, 2014, 19 : 245 - 250
  • [13] Heisenberg model in pseudo-Euclidean spaces
    Jovanovic, Bozidar
    REGULAR & CHAOTIC DYNAMICS, 2014, 19 (02): : 245 - 250
  • [14] On flat pseudo-Euclidean nilpotent Lie algebras
    Boucetta, Mohamed
    Lebzioui, Hicham
    JOURNAL OF ALGEBRA, 2019, 537 : 459 - 477
  • [15] CLASSIFICATION OF COMPACT HOMOGENEOUS PSEUDO-KAHLER MANIFOLDS
    DORFMEISTER, J
    GUAN, ZD
    COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 499 - 513
  • [16] Heisenberg Model in Pseudo-Euclidean Spaces II
    Božidar Jovanović
    Vladimir Jovanović
    Regular and Chaotic Dynamics, 2018, 23 : 418 - 437
  • [17] Heisenberg Model in Pseudo-Euclidean Spaces II
    Jovanovic, Bozidar
    Jovanovic, Vladimir
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (04): : 418 - 437
  • [18] The minimality of biharmonic hypersurfaces in pseudo-Euclidean spaces
    Du, Li
    Yuan, Xiaoqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1587 - 1595
  • [19] Generalized Pseudo-Kahler Structures
    Davidov, Johann
    Grantcharov, Gueo
    Mushkarov, Oleg
    Yotov, Miroslav
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (01) : 49 - 68
  • [20] Geometry of position functions of Riemannian submanifolds in pseudo-Euclidean space
    Chen, Bang-Yen
    JOURNAL OF GEOMETRY, 2022, 74 (1-2) : 61 - 77