ASYMPTOTIC CONVERGENCE ANALYSIS OF THE FORWARD-BACKWARD SPLITTING ALGORITHM

被引:7
|
作者
ZHU, CY
机构
关键词
MONOTONE OPERATOR; MULTIVALUED EQUATION; VARIATIONAL INEQUALITY; SPLITTING ALGORITHM; PROXIMAL POINT ALGORITHM; ASYMPTOTIC CONVERGENCE;
D O I
10.1287/moor.20.2.449
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The asymptotic convergence of the forward-backward splitting algorithm for solving equations of type 0 is an element of T(z) is analyzed, where T is a multivalued maximal monotone operator in the n-dimensional Euclidean space, When the problem has a nonempty solution set, and T is split in the form T = J + h It with J being maximal monotone and h being co-coercive with modulus greater than 1/2, convergence rates are shown, under mild conditions, to be linear, superlinear or sublinear depending on how rapidly J(-1) and h(-1) grow in the neighborhoods of certain specific points. As a special case, when both J and h are polyhedral functions, we get R-linear convergence and 2-step e-linear convergence without any further assumptions on the strict monotonicity on T or on the uniqueness of the solution. As another special case when h = 0, the splitting algorithm reduces to the proximal point algorithm, and we get new results, which complement R. T. Rockafellar's and F. J. Luque's earlier results on the proximal point algorithm.
引用
收藏
页码:449 / 464
页数:16
相关论文
共 50 条