Scale Adaptive Kernel Correlation Filtering for Target Tracking

被引:12
|
作者
Gao Meifeng [1 ]
Zhang Xiaoxuan [1 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
关键词
machine vision; target tracking; kernel correlation filtering; least squares classifier; scale estimation; occlusion detection;
D O I
10.3788/LOP55.041501
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Focusing on the issue that the traditional tracking method is difficult to adapt to the target scale variation in real time accurately, an adaptive scale target tracking algorithm based on kernel correlation filtering tracking framework, which adapts a scale estimation method, is proposed. Firstly, the regularized least squares classifier is used to obtain the filter template, and the position of the target is estimated by detecting the candidate samples. Then, the scale of current frame is determined based on the target size of the previous frame, and the scale samples arc obtained by the maximum response value through the scale estimation method. Finally, the target and scale model parameters arc updated online according to the occlusion detection mechanism. The experimental results show that the proposed algorithm improves the distance precision by 17.12% and the success rate by 10.77% as compared with the best of the other tracking algorithms. In complex scenes, such as background clutters, severe occlusion, and illumination, posture and scale variation, the proposed algorithm still has a good tracking performance.
引用
收藏
页数:7
相关论文
共 18 条
  • [1] Ensemble tracking
    Avidan, Shai
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (02) : 261 - 271
  • [2] Robust Object Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1619 - 1632
  • [3] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [4] Chen X Z, 2017, CHINESE J LASERS, V44
  • [5] Danelljan M, 2011, 2014 IEEE C COMP VIS, P1090
  • [6] Hare S, 2011, IEEE I CONF COMP VIS, P263, DOI 10.1109/ICCV.2011.6126251
  • [7] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [8] Exploiting the Circulant Structure of Tracking-by-Detection with Kernels
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 702 - 715
  • [9] Tracking-Learning-Detection
    Kalal, Zdenek
    Mikolajczyk, Krystian
    Matas, Jiri
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (07) : 1409 - 1422
  • [10] Liu H, 2016, OPTOELECTRONIC ENG, V43, P58