Robust Object Tracking with Online Multiple Instance Learning

被引:1622
|
作者
Babenko, Boris [1 ,3 ]
Yang, Ming-Hsuan [2 ,3 ]
Belongie, Serge [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Calif, Dept Comp Sci, Merced, CA 95344 USA
[3] Honda Res Inst, Columbus, OH USA
基金
美国国家科学基金会;
关键词
Visual Tracking; multiple instance learning; online boosting; MODELS; VIEW;
D O I
10.1109/TPAMI.2010.226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called "tracking by detection" has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
引用
下载
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条
  • [1] ROBUST OBJECT TRACKING VIA ONLINE MULTIPLE INSTANCE METRIC LEARNING
    Yang, Min
    Zhang, Caixia
    Wu, Yuwei
    Pei, Mingtao
    Jia, Yunde
    ELECTRONIC PROCEEDINGS OF THE 2013 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2013,
  • [2] Object tracking via Online Multiple Instance Learning with reliable components
    Wu, Feng
    Peng, Shaowu
    Zhou, Jingkai
    Liu, Qiong
    Xie, Xiaojia
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2018, 172 : 25 - 36
  • [3] Learning multiple instance deep quality representation for robust object tracking
    Wang, Guan
    Liu, Jing
    Lo, Wei
    Yang, Chun-Ming
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 113 : 298 - 303
  • [4] Visual object tracking with online weighted chaotic multiple instance learning
    Abdechiri, Marjan
    Faez, Karim
    Amindavar, Hamidreza
    NEUROCOMPUTING, 2017, 247 : 16 - 30
  • [5] INSTANCE FLOW BASED ONLINE MULTIPLE OBJECT TRACKING
    Bullinger, Sebastian
    Bodensteiner, Christoph
    Arens, Michael
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 785 - 789
  • [6] Robust visual tracking via online multiple instance learning with Fisher information
    Xu, Chao
    Tao, Wenyuan
    Meng, Zhaopeng
    Feng, Zhiyong
    PATTERN RECOGNITION, 2015, 48 (12) : 3917 - 3926
  • [7] Visual Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 983 - +
  • [8] OBJECT TRACKING BASED ON ONLINE PARTIAL INSTANCE LEARNING WITH MULTIPLE LOCAL STRONG CLASSIFIERS
    Bae, Sung-Ho
    Kim, Munchurl
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 358 - 362
  • [9] Real-time object tracking via online weighted multiple instance learning
    Zhu, M. (zhu_mingca@163.com), 1661, Chinese Academy of Sciences (22):
  • [10] Improved weighted multiple instance learning for object tracking
    Dou, Jianfang
    Qin, Qin
    Tu, Zimei
    OPTIK, 2015, 126 (24): : 5287 - 5293