Robust Object Tracking with Online Multiple Instance Learning

被引:1622
|
作者
Babenko, Boris [1 ,3 ]
Yang, Ming-Hsuan [2 ,3 ]
Belongie, Serge [1 ]
机构
[1] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[2] Univ Calif, Dept Comp Sci, Merced, CA 95344 USA
[3] Honda Res Inst, Columbus, OH USA
基金
美国国家科学基金会;
关键词
Visual Tracking; multiple instance learning; online boosting; MODELS; VIEW;
D O I
10.1109/TPAMI.2010.226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we address the problem of tracking an object in a video given its location in the first frame and no other information. Recently, a class of tracking techniques called "tracking by detection" has been shown to give promising results at real-time speeds. These methods train a discriminative classifier in an online manner to separate the object from the background. This classifier bootstraps itself by using the current tracker state to extract positive and negative examples from the current frame. Slight inaccuracies in the tracker can therefore lead to incorrectly labeled training examples, which degrade the classifier and can cause drift. In this paper, we show that using Multiple Instance Learning (MIL) instead of traditional supervised learning avoids these problems and can therefore lead to a more robust tracker with fewer parameter tweaks. We propose a novel online MIL algorithm for object tracking that achieves superior results with real-time performance. We present thorough experimental results (both qualitative and quantitative) on a number of challenging video clips.
引用
下载
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条
  • [21] Robust Superpixel Tracking with Weighted Multiple-Instance Learning
    Cheng, Xu
    Li, Nijun
    Zhou, Tongchi
    Zhou, Lin
    Wu, Zhenyang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2015, E98D (04) : 980 - 984
  • [22] Robust objectness tracking with weighted multiple instance learning algorithm
    Yang, Honghong
    Qu, Shiru
    Zhu, Fumin
    Zheng, Zunxin
    NEUROCOMPUTING, 2018, 288 : 43 - 53
  • [23] Visual object tracking based on objectness measure with multiple instance learning
    Hua W.
    Mu D.
    Guo D.
    Liu H.
    Mu, Dejun (mudejun@nwpu.edu.cn), 1600, Beijing University of Aeronautics and Astronautics (BUAA) (43): : 1364 - 1372
  • [24] Visual dictionary and online multi-instance learning based object tracking
    School of Information and Electronics, Beijing Institute of Technology, Beijing
    100081, China
    Xi Tong Cheng Yu Dian Zi Ji Shu/Syst Eng Electron, 2 (428-435):
  • [25] Online learning of multiple detectors for visual object tracking
    Quan, Wei
    Chen, Jin-Xiong
    Yu, Nan-Yang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (05): : 875 - 882
  • [26] Robust object tracking via constrained online dictionary learning
    Na Liu
    Hong Huo
    Tao Fang
    Multimedia Tools and Applications, 2019, 78 : 3689 - 3703
  • [27] Learning online structural appearance model for robust object tracking
    YANG Min
    PEI MingTao
    WU YuWei
    JIA YunDe
    Science China(Information Sciences), 2015, 58 (03) : 105 - 118
  • [28] Robust object tracking via constrained online dictionary learning
    Liu, Na
    Huo, Hong
    Fang, Tao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) : 3689 - 3703
  • [29] Learning online structural appearance model for robust object tracking
    Yang Min
    Pei MingTao
    Wu YuWei
    Jia YunDe
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (03) : 1 - 14
  • [30] Visual tracking via online discriminative multiple instance metric learning
    Honghong Yang
    Shiru Qu
    Zunxin Zheng
    Multimedia Tools and Applications, 2018, 77 : 4113 - 4131