On the Ramsey number R(3, 6)

被引:0
|
作者
Cariolaro, David [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an easy proof for R(3, 6) = 18.
引用
收藏
页码:301 / 304
页数:4
相关论文
共 50 条
  • [31] THE IRREDUNDANT RAMSEY NUMBER S(3,3,3)=13
    COCKAYNE, EJ
    MYNHARDT, CM
    [J]. JOURNAL OF GRAPH THEORY, 1994, 18 (06) : 595 - 604
  • [32] RAMSEY NUMBER N(3,3,3,3-2)
    WHITEHEA.EG
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 923 - &
  • [33] THE IRREDUNDANT RAMSEY NUMBER S(3,7)
    CHEN, G
    ROUSSEAU, CC
    [J]. JOURNAL OF GRAPH THEORY, 1995, 19 (02) : 263 - 270
  • [34] The value of the Ramsey number R4(C4)
    Yongqi, Sun
    Yuansheng, Yang
    Xiaohui, Lin
    Wenping, Zheng
    [J]. UTILITAS MATHEMATICA, 2007, 73 : 33 - 44
  • [35] ON THE RAMSEY NUMBER R(K(5)-E,K(5)-E)
    RADZISZOWSKI, SP
    [J]. ARS COMBINATORIA, 1993, 36 : 225 - 232
  • [36] AN UPPER BOUND FOR THE RAMSEY NUMBER R(K5-E)
    HARBORTH, H
    MENGERSEN, I
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 483 - 485
  • [37] Ramsey and Gallai-Ramsey Number for Wheels
    Yaping Mao
    Zhao Wang
    Colton Magnant
    Ingo Schiermeyer
    [J]. Graphs and Combinatorics, 2022, 38
  • [38] The Ramsey number R(C8, K8)
    Zhang, Yunqing
    Zhang, Ke Min
    [J]. DISCRETE MATHEMATICS, 2009, 309 (05) : 1084 - 1090
  • [39] Ramsey and Gallai-Ramsey Number for Wheels
    Mao, Yaping
    Wang, Zhao
    Magnant, Colton
    Schiermeyer, Ingo
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [40] THE IRREDUNDANT RAMSEY NUMBER S(3,7)
    COCKAYNE, EJ
    HATTINGH, JH
    MYNHARDT, CM
    [J]. UTILITAS MATHEMATICA, 1991, 39 : 145 - 160