Semi-Supervised Sequential Kernel Regression Models with Penalty Functions

被引:0
|
作者
Tang, Hengjin [1 ]
Miyamoto, Sadaaki [1 ]
Endo, Yasunori [1 ]
机构
[1] Univ Tsukuba, Sch Syst & Informat Engn, Dept Risk Engn, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058573, Japan
关键词
kernel regression; switching regression models; semi-supervised clustering; sequential clustering; penalty functions;
D O I
10.20965/jaciii.2015.p0051
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Switching regression models can output multiple clusters and regression models. However, there is one problem: the results have a strong dependency on the predefined number of clusters. To avoid these drawbacks, we have researched sequential extractions. In sequential extractions process, one cluster is extracted at a time using a method of noise-detection, and the number of clusters are determined automatically. We propose semi-supervised sequential kernel regression models with penalty functions. Additionally, we also find that the sensitivity against the regularization parameter. can be alleviated by semi-supervisions using penalty functions. We show the effectiveness of the proposed method by using numerical examples.
引用
收藏
页码:49 / 55
页数:7
相关论文
共 50 条
  • [1] Semi-supervised kernel regression
    Wang, Meng
    Hua, Xian-Sheng
    Song, Yan
    Dai, Li-Rong
    Zhang, Hong-Jiang
    [J]. ICDM 2006: Sixth International Conference on Data Mining, Proceedings, 2006, : 1130 - 1135
  • [2] Semi-supervised kernel methods for regression estimation
    Pozdnoukhov, Alexei
    Bengio, Samy
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5435 - 5438
  • [3] Semi-supervised Sequential Generative Models
    Teng, Michael
    Le, Tuan Anh
    Scibior, Adam
    Wood, Frank
    [J]. CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 649 - 658
  • [4] Distributed Semi-supervised Learning with Kernel Ridge Regression
    Chang, Xiangyu
    Lin, Shao-Bo
    Zhou, Ding-Xuan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [5] Semi-supervised kernel regression using whitened function classes
    Franz, MO
    Kwon, Y
    Rasmussen, CE
    Schölkopf, B
    [J]. PATTERN RECOGNITION, 2004, 3175 : 18 - 26
  • [6] Semi-supervised regression with manifold: A Bayesian deep kernel learning approach
    Xu, Lu
    Hu, Chen
    Mei, Kuizhi
    [J]. NEUROCOMPUTING, 2022, 497 : 76 - 85
  • [7] Semi-supervised regression with manifold: A Bayesian deep kernel learning approach
    Xu, Lu
    Hu, Chen
    Mei, Kuizhi
    [J]. Neurocomputing, 2022, 497 : 76 - 85
  • [8] Semi-Supervised Linear Regression
    Azriel, David
    Brown, Lawrence D.
    Sklar, Michael
    Berk, Richard
    Buja, Andreas
    Zhao, Linda
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2238 - 2251
  • [9] Semi-supervised logistic regression
    Amini, MR
    Gallinari, P
    [J]. ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2002, 77 : 390 - 394
  • [10] Quantum semi-supervised kernel learning
    Seyran Saeedi
    Aliakbar Panahi
    Tom Arodz
    [J]. Quantum Machine Intelligence, 2021, 3