Semi-supervised kernel regression using whitened function classes

被引:0
|
作者
Franz, MO [1 ]
Kwon, Y [1 ]
Rasmussen, CE [1 ]
Schölkopf, B [1 ]
机构
[1] Max Planck Inst Biol Cybernet, D-72076 Tubingen, Germany
来源
PATTERN RECOGNITION | 2004年 / 3175卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of non-orthonormal basis functions in ridge regression leads to an often undesired non-isotropic prior in function space. In this study, we investigate an alternative regularization technique that results in an implicit whitening of the basis functions by penalizing directions in function space with a large prior variance. The regularization term is computed from unlabelled input data that characterizes the input distribution. Tests on two datasets using polynomial basis functions showed an improved average performance compared to standard ridge regression.
引用
收藏
页码:18 / 26
页数:9
相关论文
共 50 条
  • [1] Semi-supervised kernel regression
    Wang, Meng
    Hua, Xian-Sheng
    Song, Yan
    Dai, Li-Rong
    Zhang, Hong-Jiang
    [J]. ICDM 2006: Sixth International Conference on Data Mining, Proceedings, 2006, : 1130 - 1135
  • [2] Semi-supervised kernel methods for regression estimation
    Pozdnoukhov, Alexei
    Bengio, Samy
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5435 - 5438
  • [3] Distributed Semi-supervised Learning with Kernel Ridge Regression
    Chang, Xiangyu
    Lin, Shao-Bo
    Zhou, Ding-Xuan
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [4] Semi-Supervised Sequential Kernel Regression Models with Penalty Functions
    Tang, Hengjin
    Miyamoto, Sadaaki
    Endo, Yasunori
    [J]. JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2015, 19 (01) : 49 - 55
  • [5] Evolutionary Semi-Supervised Ordinal Regression Using Weighted Kernel Fisher Discriminant Analysis
    Wu, Yuzhou
    Sun, Yu
    Liang, Xinle
    Tang, Ke
    Cai, Zixing
    [J]. 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 3279 - 3286
  • [6] Semi-supervised regression using diffusion on graphs
    Timilsina, Mohan
    Figueroa, Alejandro
    d'Aquin, Mathieu
    Yang, Haixuan
    [J]. APPLIED SOFT COMPUTING, 2021, 104
  • [7] Semi-supervised regression with manifold: A Bayesian deep kernel learning approach
    Xu, Lu
    Hu, Chen
    Mei, Kuizhi
    [J]. NEUROCOMPUTING, 2022, 497 : 76 - 85
  • [8] Semi-supervised regression with manifold: A Bayesian deep kernel learning approach
    Xu, Lu
    Hu, Chen
    Mei, Kuizhi
    [J]. Neurocomputing, 2022, 497 : 76 - 85
  • [9] SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
    Wang, Botao
    Xiong, Hongkai
    Jiang, Xiaoqian
    Ling, Fan
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2157 - 2160
  • [10] Semi-supervised Metric Learning Using Composite Kernel
    Zare, T.
    Sadeghi, M. T.
    Abutalebi, H. R.
    [J]. 2012 SIXTH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2012, : 1151 - 1156