A finite element variational multiscale method for computations of turbulent flow over an aerofoil

被引:0
|
作者
Pal, Birupaksha [1 ]
Ganesan, Sashikumaar [1 ]
机构
[1] Indian Inst Sci, SERC, Numer Math & Sci Comp, Bangalore 560012, Karnataka, India
关键词
Turbulent flows; Incompressible Navier-Stokes; Multiscale method; Finite elements;
D O I
10.1007/s12572-015-0126-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Numerical simulation of turbulent flows over different aerofoil configurations are presented in this paper. The incompressible fluid flow is described by the time-dependent incompressible Navier-Stokes equations. Further, a finite element variational multiscale method is used to simulate the turbulent flows. Computation over a cylinder and different variants of aerofoils are presented. The obtained numerical results demonstrate the capabilities of variational multiscale methods.
引用
收藏
页码:14 / 24
页数:11
相关论文
共 50 条
  • [21] Multiscale finite element method for nonlinear flow in porous media
    Zhang, Na
    Yao, Jun
    Huang, Zhaoqin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2015, 46 (12): : 4584 - 4591
  • [22] A modified multiscale finite element method for nonlinear flow in reservoirs
    Zhang, Na
    Yao, Jun
    Xue, ShiFeng
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2016, 137 : 97 - 106
  • [23] A COMBINED FINITE ELEMENT AND MULTISCALE FINITE ELEMENT METHOD FOR THE MULTISCALE ELLIPTIC PROBLEMS
    Deng, Weibing
    Wu, Haijun
    MULTISCALE MODELING & SIMULATION, 2014, 12 (04): : 1424 - 1457
  • [24] TRANSONIC FLOW COMPUTATIONS IN CASCADES USING FINITE-ELEMENT METHOD
    AKAY, HU
    ECER, A
    JOURNAL OF ENGINEERING FOR POWER-TRANSACTIONS OF THE ASME, 1981, 103 (04): : 657 - 664
  • [25] Parallel finite element variational multiscale algorithms for incompressible flow at high Reynolds numbers
    Shang, Yueqiang
    Qin, Jin
    APPLIED NUMERICAL MATHEMATICS, 2017, 117 : 1 - 21
  • [26] FINITE-ELEMENT METHOD FOR COMPUTING TURBULENT PROPELLER FLOW
    PELLETIER, D
    GARON, A
    CAMARERO, R
    AIAA JOURNAL, 1991, 29 (01) : 68 - 75
  • [27] Multiscale Simulations for Coupled Flow and Transport Using the Generalized Multiscale Finite Element Method
    Chung, Eric T.
    Efendiev, Yalchin
    Leung, Wing Tat
    Ren, Jun
    COMPUTATION, 2015, 3 (04): : 670 - 686
  • [28] Multiscale, adaptive finite element computations for soft tissue biomechanics
    Stylianopoulos, Triantafyllos
    Luo, Xiaojuan
    Shephard, Mark S.
    Barocas, Victor H.
    PROCEEDING OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2007, 2007, : 405 - 406
  • [29] Two-level finite element variational multiscale method based on bubble functions for the steady incompressible MHD flow
    Zhang, Tong
    Qian, Yanxia
    HuangFu, Yugao
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (03) : 515 - 535
  • [30] Finite Element Solutions for Turbulent Flow over the NACA 0012 Airfoil
    Anderson, W. Kyle
    Ahrabi, Behzad R.
    Newman, James C.
    AIAA JOURNAL, 2016, 54 (09) : 2688 - 2704