A NEW GENERALIZATION OF MOULTON AFFINE PLANES

被引:3
|
作者
JAKOBOWSKI, J [1 ]
机构
[1] PEDAGOGICAL COLL,DEPT MATH,PL-10561 OLSZTYN,POLAND
关键词
D O I
10.1007/BF02414064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a variation on W. A. Pierce's construction of Moulton planes. For any pseudo-ordered field F, the pairs of elements of F are taken as points, and straight lines are given by the equations x = c, y = mx + n with m greater-than-or-equal-to 0 and g(y) = mf(x)+n with m < 0, where f and g are mappings of F into itself which have to satisfy a number of conditions.
引用
收藏
页码:243 / 253
页数:11
相关论文
共 50 条
  • [21] An affine generalization of evacuation
    Michael Chmutov
    Gabriel Frieden
    Dongkwan Kim
    Joel Brewster Lewis
    Elena Yudovina
    Selecta Mathematica, 2022, 28
  • [22] Flat Circle Planes as Integrals of Flat Affine Planes
    Burkard Polster
    Geometriae Dedicata, 1997, 67 : 149 - 162
  • [23] FINITE AFFINE PLANES OF RANK 3 ARE TRANSLATION PLANES
    LIEBLER, RA
    MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (02) : 89 - &
  • [24] INVOLUTORY HOMOLOGIES ON AFFINE PLANES
    DEMPWOLFF, U
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1987, 57 : 37 - 55
  • [25] ORDER IN FINITE AFFINE PLANES
    BEATTIE, M
    MARSDEN, JE
    SHARPE, RW
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (04): : 407 - &
  • [26] SUB-PLANES OF AFFINE-ARCHIMEDIC PLANES
    KALHOFF, F
    ARCHIV DER MATHEMATIK, 1986, 47 (02) : 185 - 186
  • [27] On minimal affine planes, that are simultaneously minimal planes.
    Suss, W
    MATHEMATISCHE ZEITSCHRIFT, 1937, 42 : 697 - 699
  • [28] Flat circle planes as integrals of flat affine planes
    Polster, B
    GEOMETRIAE DEDICATA, 1997, 67 (02) : 149 - 162
  • [29] Andre embeddings of affine planes
    Thas, J. A.
    Van Maldeghem, H.
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 123 - 131
  • [30] Convexity in topological affine planes
    Dhandapani, Raghavan
    Goodman, Jacob E.
    Holmsen, Andreas
    Pollack, Richard
    Smorodinsky, Shakhar
    DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 38 (02) : 243 - 257