A SCHEMA FOR OBTAINING THE SUM OF THE ALTERNATING SERIES

被引:0
|
作者
Vernescu, Andrei [1 ]
机构
[1] Valahia Univ Targoviste, Fac Sci & Arts, Targoviste 130024, Romania
来源
关键词
Convergent series; alternating series; sum of a series; power series; integrals; geometric progression; trigonometric series; the residues theorem; the identity of Catalan; generalized constant of Euler type; the function of Riemann;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We recall some classical methods for obtaining the sum of the alternating series and we give a special attention to one of these methods, generalizing the schema based on the identity of Catalan.
引用
收藏
页码:157 / 168
页数:12
相关论文
共 50 条
  • [41] PERFECT POWERS IN AN ALTERNATING SUM OF CONSECUTIVE CUBES
    Das, Pranabesh
    Dey, Pallab Kant
    Maji, Bibekananda
    Rout, Sudhansu Sekhar
    GLASNIK MATEMATICKI, 2020, 55 (01) : 37 - 53
  • [42] Restricted sum formula of alternating Euler sums
    Jianqiang Zhao
    The Ramanujan Journal, 2015, 36 : 375 - 401
  • [43] Max and Sum Semantics for Alternating Weighted Automata
    Almagor, Shaull
    Kupferman, Orna
    AUTOMATED TECHNOLOGY FOR VERIFICATION AND ANALYSIS, 2011, 6996 : 13 - 27
  • [44] The partially alternating ternary sum in an associative dialgebra
    Bremner, Murray R.
    Sanchez-Ortega, Juana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (45)
  • [45] A survey of the alternating sum-of-divisors function
    Toth, Laszlo
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2013, 5 (01) : 93 - 107
  • [46] An alternating sum involving unsigned Stirling numbers
    Stong, R
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (02): : 159 - 160
  • [47] An Alternating Sum of Fibonacci and Lucas Numbers of Orderk
    Dafnis, Spiros D.
    Philippou, Andreas N.
    Livieris, Ioannis E.
    MATHEMATICS, 2020, 8 (09)
  • [48] An Alternating Sum of the Squares of Tetranacci Numbers Proposed
    Ohtsuka, Hideyuki
    FIBONACCI QUARTERLY, 2021, 59 (04): : 371 - 371
  • [49] Restricted sum formula of alternating Euler sums
    Zhao, Jianqiang
    RAMANUJAN JOURNAL, 2015, 36 (03): : 375 - 401
  • [50] Generalizations of Some Formulas of the Reciprocal Sum and Alternating Sum for Generalized Lucas Numbers
    YE Xiao-li LIU Mai-xue (Department of Mathematics
    数学季刊, 2007, (01) : 99 - 103