A UNIFIED APPROACH TO OPTIMAL FEEDBACK IN THE INFINITE-DIMENSIONAL LINEAR QUADRATIC CONTROL PROBLEM WITH AN INEQUALITY CONSTRAINT ON THE TRAJECTORY OR TERMINAL STATE

被引:2
|
作者
EMIRSAJLOW, Z [1 ]
机构
[1] TECH UNIV SZCZECIN,INST CONTROL ENGN,PL-70313 SZCZECIN,POLAND
关键词
D O I
10.1093/imamci/8.2.179
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper develops a unified approach to optimal feedback control in the infinite-dimensional linear-quadratic control problem with an inequality constraint on the trajectory or terminal state. A general abstract Hilbert-space framework for the problem is provided, and then the results are specified to concrete optimal problems for a linear infinite-dimensional system which allows unboundedness in the input and output operators. In all cases, the same technique is used in order to obtain the optimal control in feedback form; in some cases, the differential Riccati equation is derived for the optimal cost operator.
引用
收藏
页码:179 / 208
页数:30
相关论文
共 50 条
  • [31] A viscosity approach to infinite-dimensional Hamilton-Jacobi equations arising in optimal control with state constraints
    Kocan, M
    Soravia, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (04) : 1348 - 1375
  • [32] Output feedback control synthesis for linear time-delay systems via infinite-dimensional LMI approach
    Azuma, T
    Sagara, S
    Fujita, M
    Uchida, K
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 4026 - 4031
  • [33] Study on Stochastic Linear Quadratic Optimal Control with Quadratic and Mixed Terminal State Constraints
    Yang Hongli
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [34] OPTIMAL FEEDBACK-CONTROL OF INFINITE-DIMENSIONAL PARABOLIC EVOLUTION SYSTEMS - APPROXIMATION TECHNIQUES
    BANKS, HT
    WANG, C
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (05) : 1182 - 1219
  • [35] Solution to a non-convex linear quadratic optimal control problem with constraint
    Zhu, Jinghao
    Zhu, Lidong
    [J]. Zhu, Lidong, 1755, Science Press (42): : 1755 - 1758
  • [36] A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon
    Wu, Jiali
    Tang, Maoning
    Meng, Qingxin
    [J]. AIMS MATHEMATICS, 2023, 8 (02): : 4042 - 4078
  • [37] Discussion on: "Feedback Stabilization of Infinite-Dimensional Linear Systems with Constraints on Control and its Rate"
    Mesquine, Fouad
    Tadeo, Fernando
    Alvarez, Teresa
    [J]. EUROPEAN JOURNAL OF CONTROL, 2011, 17 (02) : 191 - 193
  • [38] THE INFINITE TIME QUADRATIC CONTROL PROBLEM FOR LINEAR-SYSTEMS WITH STATE AND CONTROL DELAYS - AN EVOLUTION EQUATION APPROACH
    VINTER, RB
    KWONG, RH
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (01) : 139 - 153
  • [39] Linear quadratic state feedback optimal control against actuator, failures
    Zhang, Zhizhou
    Long, Zhiqiang
    She, Longhua
    Chang, Wensen
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 3349 - 3354
  • [40] Optimal Feedback in a Linear–Quadratic Optimal Control Problem for a Fractional-Order System
    M. I. Gomoyunov
    N. Yu. Lukoyanov
    [J]. Differential Equations, 2023, 59 : 1117 - 1129