VECTOR HARMONIZABLE PROCESSES - WOLD AND CRAMER DECOMPOSITIONS

被引:1
|
作者
KAKIHARA, Y [1 ]
机构
[1] TOKYO DENKI UNIV,DEPT INFORMAT SCI,HATOYAMA,SAITAMA 35003,JAPAN
关键词
D O I
10.1080/07362999508809415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a weakly operator harmonizable process a relation between the Wold decompositions of the original process and of its operator stationary dilation process is obtained. The Cramer decomposition is defined for weakly operator harmonizable processes and is considered in connection with their operator stationary dilation processes. Some equivalence conditions for the Wold-Cramer concordance are also stated.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 50 条
  • [41] Multivariate Wold decompositions: a Hilbert A-module approach
    Cerreia-Vioglio, Simone
    Ortu, Fulvio
    Severino, Federico
    Tebaldi, Claudio
    DECISIONS IN ECONOMICS AND FINANCE, 2023, 46 (01) : 45 - 96
  • [42] Wold Decompositions and the Unitary Model for Bi-isometries
    Dumitru Gaşpar
    Păstorel Gaşpar
    Integral Equations and Operator Theory, 2004, 49 : 419 - 433
  • [43] THE CRAMER-WOLD THEOREM ON QUADRATIC SURFACES AND HEISENBERG UNIQUENESS PAIRS
    Groechenig, Karlheinz
    Jaming, Philippe
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (01) : 117 - 135
  • [44] Average Sampling Restoration of Harmonizable Processes
    Olenko, Andriy
    Pogany, Tibor
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (19-20) : 3587 - 3598
  • [45] HARMONIZABLE PROCESSES AND MEAN ERGODIC THEOREM
    NAGABHUSHANAM, K
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1969, 31 (DEC): : 413 - 420
  • [46] On the detection and estimation of the simple harmonizable processes
    Mahmoudi, M. R.
    Nematollahi, A. R.
    Soltani, A. R.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2015, 39 (A2): : 239 - 242
  • [47] ON MINIMALITY AND INTERPOLATION OF HARMONIZABLE STABLE PROCESSES
    POURAHMADI, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) : 1023 - 1030
  • [48] Line spectral analysis for harmonizable processes
    Lii, KS
    Rosenblatt, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) : 4800 - 4803
  • [49] On Kesten's counterexample to the Cramer-Wold device for regular variation
    Hult, H
    Lindskog, F
    BERNOULLI, 2006, 12 (01) : 133 - 142
  • [50] SPECIAL REPRESENTATIONS OF WEAKLY HARMONIZABLE PROCESSES
    CHANG, DK
    RAO, MM
    STOCHASTIC ANALYSIS AND APPLICATIONS, 1988, 6 (02) : 169 - 189