Q-DEFORMATION OF POINCARE ALGEBRA

被引:703
|
作者
LUKIERSKI, J
RUEGG, H
NOWICKI, A
TOLSTOY, VN
机构
[1] UNIV BORDEAUX 1,PHYS THEOR LAB,F-34100 GRADIGNAN,FRANCE
[2] MV LOMONOSOV STATE UNIV,INST NUCL PHYS,MOSCOW 119899,USSR
关键词
D O I
10.1016/0370-2693(91)90358-W
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Standard (Drinfeld-Jimbo) q-deformation of the Cartan-Weyl basis for o(3, 2) (real form of B2) congruent-to sp(4\R) (real form of C2) is calculated. The limit R --> infinity (R is the anti-de Sitter radius) accompanied by a particular limit of the deformation parameter q(iR ln q --> const.) is performed. We obtain a modified Minkowski geometry with abelian translations but the four-momentum-dependent modification of the Lorentz boost algebra. The q-covariant generalization of the Klein-Gordon equation is given.
引用
收藏
页码:331 / 338
页数:8
相关论文
共 50 条
  • [31] On a q-deformation of modular forms
    Guo, Victor J. W.
    Zudilin, Wadim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 475 (02) : 1636 - 1646
  • [32] q-Deformation of the Lorentz group
    Finkelstein, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 953 - 964
  • [33] A p-adic q-deformation of the Weyl algebra, for q a pN-th root of unity
    Tangara, Fana
    ADVANCES IN P-ADIC AND NON-ARCHIMEDEAN ANALYSIS, 2010, 508 : 253 - 269
  • [34] A q-deformation of the harmonic oscillator
    Lorek, A
    Ruffing, A
    Wess, J
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1997, 74 (02): : 369 - 377
  • [35] A Q-DEFORMATION OF THE GAUSS DISTRIBUTION
    VANLEEUWEN, H
    MAASSEN, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (09) : 4743 - 4756
  • [36] Q-DEFORMATION OF THE COULOMB PROBLEM
    CHAN, FL
    FINKELSTEIN, RJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (07) : 3273 - 3284
  • [37] q-deformation of W (2,2) Lie algebra associated with quantum groups
    Yuan, La Mei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (11) : 2213 - 2226
  • [38] Fractional chaotic maps with q-deformation
    Luo, Cheng
    Liu, Bao-Qing
    Hou, Hu-Shuang
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 393
  • [39] Segal–Bargmann transform: the q-deformation
    Guillaume Cébron
    Ching-Wei Ho
    Letters in Mathematical Physics, 2018, 108 : 1677 - 1715
  • [40] Nested Witt vectors and their q-deformation
    Oh, Young-Tak
    JOURNAL OF ALGEBRA, 2007, 309 (02) : 683 - 710