A SIMPLE MICROSUPERSPACE MODEL IN 2+1 SPACETIME DIMENSIONS

被引:0
|
作者
MAKELA, J
机构
[1] Department of Physics, University of Jyväskylä, SF-40351 Jyväskylä
关键词
D O I
10.1016/0370-2693(92)91394-O
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We quantize the closed Friedmann model in 2 + 1 spacetime dimensions using euclidean path-integral approach and a simple microsuperspace model. A relationship between integration measure and operator ordering in the Wheeler-DeWitt equation is found within our model. Solutions to the Wheeler-DeWitt equation are exactly reproduced from the path integral using suitable integration contours in the complex plane.
引用
收藏
页码:399 / 404
页数:6
相关论文
共 50 条
  • [1] Rotating kink spacetime in 2+1 dimensions
    Williams, JG
    GENERAL RELATIVITY AND GRAVITATION, 1998, 30 (01) : 27 - 33
  • [2] Rotating Kink Spacetime in 2+1 Dimensions
    Gen Relat Gravitation, 1 (27):
  • [3] Rotating Kink Spacetime in 2+1 Dimensions
    J. G. Williams
    General Relativity and Gravitation, 1998, 30 : 27 - 33
  • [4] Scalar quantum fields in cosmologies with 2+1 spacetime dimensions
    Sanchez-Kuntz, Natalia
    Parra-Lopez, Alvaro
    Tolosa-Simeon, Mireia
    Haas, Tobias
    Floerchinger, Stefan
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [5] SIMPLICIAL WHEELER-DEWITT EQUATION IN 2+1 SPACETIME DIMENSIONS
    MAKELA, J
    PHYSICAL REVIEW D, 1993, 48 (04): : 1679 - 1686
  • [6] MODEL WITH SOLITONS IN (2+1) DIMENSIONS
    IZQUIERDO, JM
    RASHID, MS
    PIETTE, B
    ZAKRZEWSKI, WJ
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (01): : 177 - 182
  • [7] A NONCOMPACT SPIN MODEL IN (2+1) DIMENSIONS
    LEO, RA
    MARTINA, L
    SOLIANI, G
    PHYSICS LETTERS B, 1990, 247 (04) : 562 - 566
  • [8] On the Heisenberg Supermagnet Model in (2+1)-Dimensions
    Yan, Zhao-Wen
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (04): : 331 - 337
  • [9] Bosonization of the Thirring model in 2+1 dimensions
    Santos, Rodrigo Corso B.
    Gomes, Pedro R. S.
    Hernaski, Carlos A.
    PHYSICAL REVIEW D, 2020, 101 (07):
  • [10] Fuzzy Schwarzschild (2+1)-spacetime
    Viennot, David
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)