A NONCOMPACT SPIN MODEL IN (2+1) DIMENSIONS

被引:8
|
作者
LEO, RA [1 ]
MARTINA, L [1 ]
SOLIANI, G [1 ]
机构
[1] IST NAZL FIS NUCL,LECCE,ITALY
关键词
D O I
10.1016/0370-2693(90)91901-M
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A modified version of the Ishimori model endowed with SU(1,1) symmetry is proposed. Some classes of both rational and biperiodic exact singular solutions are obtained. These solutions are characterized by a topological charge. © 1990.
引用
收藏
页码:562 / 566
页数:5
相关论文
共 50 条
  • [1] Backlund Loop Algebras for Compact and Noncompact Nonlinear Spin Models in 2+1 Dimensions
    M. Palese
    Theoretical and Mathematical Physics, 2005, 144 : 1014 - 1021
  • [2] Backlund loop algebras for compact and noncompact nonlinear spin models in 2+1 dimensions
    Palese, M
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (01) : 1014 - 1021
  • [3] SPIN TRANSMUTATION IN (2+1)-DIMENSIONS
    CHEN, W
    ITOI, C
    NUCLEAR PHYSICS B, 1995, 435 (03) : 690 - 702
  • [4] CONFORMAL HIGHER SPIN IN (2+1) DIMENSIONS
    POPE, CN
    TOWNSEND, PK
    PHYSICS LETTERS B, 1989, 225 (03) : 245 - 250
  • [5] MODEL WITH SOLITONS IN (2+1) DIMENSIONS
    IZQUIERDO, JM
    RASHID, MS
    PIETTE, B
    ZAKRZEWSKI, WJ
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1992, 53 (01): : 177 - 182
  • [6] NONLINEAR EXCITATIONS IN A HAMILTONIAN SPIN-FIELD MODEL IN 2+1 DIMENSIONS
    MARTINA, L
    PROFILO, G
    SOLIANI, G
    SOLOMBRINO, L
    PHYSICAL REVIEW B, 1994, 49 (18): : 12915 - 12922
  • [7] LOOP ALGEBRAS AND SYMMETRIES RELATED TO BOTH A COMPACT AND A NONCOMPACT VERSION OF A (2+1)-DIMENSIONAL SPIN MODEL
    PROFILO, G
    SOLIANI, G
    SOLOMBRINO, L
    PHYSICS LETTERS B, 1991, 271 (3-4) : 337 - 342
  • [8] SOLITON OPERATORS OF FRACTIONAL SPIN IN 2+1 DIMENSIONS
    KARABALI, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (08): : 1369 - 1383
  • [9] Spin in the worldline path integral in 2+1 dimensions
    Fosco, C. D.
    Sanchez-Guillen, J.
    Vazquez, R. A.
    ANNALS OF PHYSICS, 2008, 323 (02) : 356 - 372
  • [10] On the Stability of Certain Spin Models in 2+1 Dimensions
    Bejenaru, I.
    Ionescu, A. D.
    Kenig, C. E.
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (01) : 1 - 39