CONTINUOUSLY VARYING EXPONENTS IN REACTION-DIFFUSION SYSTEMS

被引:8
|
作者
NEWMAN, TJ [1 ]
机构
[1] UNIV COLOGNE,INST THEORET PHYS,D-50937 COLOGNE,GERMANY
来源
关键词
D O I
10.1088/0305-4470/28/6/001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a simple reaction-diffusion model describing a class of competitive multi-species reactions. The model is exactly solvable at its upper critical dimension d(u) = 2. The local moments of the component concentrations follow a power-law decay with exponents which vary continuously with system parameters. The exponents also have an underlying multifractal spectrum. The main results are supported by results from a numerical integration of the model.
引用
收藏
页码:L183 / L190
页数:8
相关论文
共 50 条
  • [31] Slowly varying control parameters, delayed bifurcations, and the stability of spikes in reaction-diffusion systems
    Tzou, J. C.
    Ward, M. J.
    Kolokolnikov, T.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2015, 290 : 24 - 43
  • [32] On generalized scaling laws with continuously varying exponents
    Sittler, L
    Hinrichsen, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (49): : 10531 - 10538
  • [33] Slowly varying waves and shock structures in reaction-diffusion systems with anomalous dispersion.
    Hamik, CT
    Steinbock, O
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : C83 - C84
  • [34] CRITICAL SPIN MODELS WITH CONTINUOUSLY VARYING EXPONENTS
    ALCARAZ, FC
    MARTINS, MJ
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (14) : 1529 - 1532
  • [35] Blow-up analyses in reaction-diffusion equations with Fujita exponents
    Li, Fengjie
    Lin, Hongyan
    Liu, Bingchen
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 386 - 412
  • [36] Nonequilibrium potential in reaction-diffusion systems
    Wio, HS
    [J]. FOURTH GRANADA LECTURES IN COMPUTATIONAL PHYSICS, 1997, 493 : 135 - 195
  • [37] Spirals and targets in reaction-diffusion systems
    Bhattacharyay, A
    [J]. PHYSICAL REVIEW E, 2001, 64 (01): : 4 - 016113
  • [38] Intermediate colloidal formation and the varying width of periodic precipitation bands in reaction-diffusion systems
    George, J
    Varghese, G
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 282 (02) : 397 - 402
  • [39] Distribution in flowing reaction-diffusion systems
    Kamimura, Atsushi
    Herrmann, Hans J.
    Ito, Nobuyasu
    [J]. PHYSICAL REVIEW E, 2009, 80 (06):
  • [40] Controllability of shadow reaction-diffusion systems
    Hernandez-Santamaria, Victor
    Zuazua, Enrique
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (07) : 3781 - 3818