CIRCLES THROUGH 2 POINTS THAT ALWAYS ENCLOSE MANY POINTS

被引:0
|
作者
EDELSBRUNNER, H
HASAN, N
SEIDEL, R
SHEN, XJ
机构
[1] UNIV ILLINOIS, DEPT COMP SCI, URBANA, IL 61801 USA
[2] UNIV CALIF BERKELEY, DEPT ELECT ENGN & COMP SCI, BERKELEY, CA 94720 USA
[3] UNIV ILLINOIS, DEPT COMP SCI, URBANA, IL 61801 USA
[4] E CHINA INST TECHNOL, DEPT COMP SCI, NANJING, PEOPLES R CHINA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [21] MANY POINTS OF LIGHT
    Gomes, Lee
    FORBES, 2009, 184 (03): : 100 - 100
  • [22] Focal points of congruence circles.
    Vincensini, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1932, 195 : 1359 - 1361
  • [23] On circles containing the maximum number of points
    Akiyama, J
    Ishigami, Y
    Urabe, M
    Urrutia, J
    DISCRETE MATHEMATICS, 1996, 151 (1-3) : 15 - 18
  • [24] A COMBINATORIAL RESULT ON POINTS AND CIRCLES ON THE PLANE
    NEUMANNLARA, V
    URRUTIA, J
    DISCRETE MATHEMATICS, 1988, 69 (02) : 173 - 178
  • [25] On the Number of Lattice Points in the Shifted Circles
    Jabbarov, Ilgar Sh
    Aslanova, Natiga Sh
    Jeferli, Esmira, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02): : 175 - 190
  • [26] Significant points on circles centre the circumcentre
    Bradley, Christopher J.
    MATHEMATICAL GAZETTE, 2011, 95 (534): : 404 - 406
  • [27] On eventually always hitting points
    Charis Ganotaki
    Tomas Persson
    Monatshefte für Mathematik, 2021, 196 : 763 - 784
  • [28] On eventually always hitting points
    Ganotaki, Charis
    Persson, Tomas
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (04): : 763 - 784
  • [29] Representing circles with five control points
    Carnicer, JM
    Mainar, E
    Peña, JM
    COMPUTER AIDED GEOMETRIC DESIGN, 2003, 20 (8-9) : 501 - 511
  • [30] On circles containing the maximum number of points
    Akiyama, J.
    Ishigami, Y.
    Urabe, M.
    Urrutia, J.
    1996, Elsevier (151) : 1 - 3