RANKIN-SELBERG METHOD FOR SIEGEL CUSP FORMS

被引:26
|
作者
YAMAZAKI, T
机构
[1] Department of Mathematics, Facility of Science, Kyushu University 33, Fukuoka
关键词
D O I
10.1017/S0027763000003226
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:35 / 49
页数:15
相关论文
共 50 条
  • [21] Double square moments and subconvexity bounds for Rankin-Selberg L-functions of holomorphic cusp forms
    Jianya Liu
    Haiwei Sun
    Yangbo Ye
    ScienceChina(Mathematics), 2020, 63 (05) : 823 - 844
  • [22] Uniqueness of Rankin-Selberg Periods
    Chen, Fulin
    Sun, Binyong
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) : 5849 - 5873
  • [23] Uniqueness of Rankin-Selberg products
    Henniart, Guy
    Lomeli, Luis
    JOURNAL OF NUMBER THEORY, 2013, 133 (12) : 4024 - 4035
  • [24] On the Rankin-Selberg problem, II
    Huang, Bingrong
    QUARTERLY JOURNAL OF MATHEMATICS, 2024, 75 (01): : 1 - 10
  • [25] Subconvexity for Rankin-Selberg L-functions of Maass forms
    Liu, JY
    Ye, YB
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (06) : 1296 - 1323
  • [26] Subconvexity for Rankin-Selberg L-Functions of Maass Forms
    Jianya Liu
    Yangbo Ye
    Geometric & Functional Analysis GAFA, 2002, 12 : 1296 - 1323
  • [27] ON THE RANKIN-SELBERG ZETA FUNCTION
    Ivic, Aleksandar
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 93 (1-2) : 101 - 113
  • [28] On the Rankin-Selberg problem in families
    Kim, Jiseong
    JOURNAL OF NUMBER THEORY, 2023, 252 : 298 - 325
  • [29] Remarks on Rankin-Selberg convolutions
    Cogdell, JW
    Piatetski-Shapiro, II
    CONTRIBUTIONS TO AUTOMORPHIC FORMS, GEOMETRY, AND NUMBER THEORY, 2004, : 255 - 278
  • [30] Non-unique models in the Rankin-Selberg method
    Bump, D
    Furusawa, M
    Ginzburg, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1995, 468 : 77 - 111