Given a fixed Hilbert modular form, we consider a family of linear maps between the spaces of Hilbert cusp forms by using the Rankin-Cohen brackets and then we compute the adjoint maps of these linear maps with respect to the Petersson scalar product. The Fourier coefficients of the Hilbert cusp forms constructed using this method involve special values of certain Dirichlet series of Rankin-Selberg type associated to Hilbert cusp forms.
机构:
Univ Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
French Japanese Lab Math & its Interact, FJ LMI CNRS IRL 2025, Tokyo, JapanUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan
Kobayashi, Toshiyuki
Pevzner, Michael
论文数: 0引用数: 0
h-index: 0
机构:
French Japanese Lab Math & its Interact, FJ LMI CNRS IRL 2025, Tokyo, Japan
Univ Reims, LMR, CNRS, UMR 9008, F-51687 Reims, FranceUniv Tokyo, Grad Sch Math Sci, 3-8-1 Komaba, Tokyo 1538914, Japan