COMBINING THE RESULTS OF SEVERAL NEURAL-NETWORK CLASSIFIERS

被引:251
|
作者
ROGOVA, G [1 ]
机构
[1] CALSPAN CORP,BUFFALO,NY 14221
关键词
CLASSIFIER; NEURAL NETWORK; CHARACTER RECOGNITION; THE DEMPSTER-SHAFER THEORY OF EVIDENCE; EVIDENCE;
D O I
10.1016/0893-6080(94)90099-X
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural networks and traditional classifiers work well for optical character recognition; however, it is advantageous to combine the results of several algorithms to improve classification accuracies. This paper presents a combination method based on the Dempster-Shafer theory of evidence, which uses statistical information about the relative classification strengths of several classifiers. Numerous experiments show the effectiveness of this approach. Our method allows 15-30% reduction of misclassification error compared to the best individual classifier
引用
收藏
页码:777 / 781
页数:5
相关论文
共 50 条
  • [1] ON THE GENERALIZATION ABILITY OF NEURAL-NETWORK CLASSIFIERS
    MUSAVI, MT
    CHAN, KH
    HUMMELS, DM
    KALANTRI, K
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (06) : 659 - 663
  • [2] Energy Optimisation of Cascading Neural-network Classifiers
    Agrawal, Vinamra
    Gopalan, Anandha
    [J]. PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON SMART CITIES AND GREEN ICT SYSTEMS (SMARTGREENS), 2020, : 149 - 158
  • [3] The eigenspace separation transform for neural-network classifiers
    Torrieri, D
    [J]. NEURAL NETWORKS, 1999, 12 (03) : 419 - 427
  • [4] STRONG UNIVERSAL CONSISTENCY OF NEURAL-NETWORK CLASSIFIERS
    FARAGO, A
    LUGOSI, G
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (04) : 1146 - 1151
  • [5] THE COMBINATION OF MULTIPLE CLASSIFIERS BY A NEURAL-NETWORK APPROACH
    HUANG, YS
    LIU, K
    SUEN, CY
    [J]. INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 1995, 9 (03) : 579 - 597
  • [6] A linear transform that simplifies and improves neural-network classifiers
    Torrieri, D
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1738 - 1743
  • [7] Evaluation of neural-network classifiers for weed species discrimination
    Burks, TF
    Shearer, SA
    Heath, JR
    Donohue, KD
    [J]. BIOSYSTEMS ENGINEERING, 2005, 91 (03) : 293 - 304
  • [8] Neural-network approximation of functions of several variables
    Alexeev D.V.
    [J]. Journal of Mathematical Sciences, 2010, 168 (1) : 5 - 13
  • [9] Improvement of Neural-Network Classifiers Using Fuzzy Floating Centroids
    Liu, Shuangrong
    Wang, Lin
    Yang, Bo
    Zhou, Jin
    Chen, Zhenxiang
    Dong, Huifen
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (03) : 1392 - 1404
  • [10] DISTRIBUTED CODING FOR DATA REPRESENTATION OF BACKPROPAGATION NEURAL-NETWORK CLASSIFIERS
    CHONG, CC
    JIA, JC
    [J]. ELECTRONICS LETTERS, 1995, 31 (21) : 1852 - 1854