Zero-Inflated Negative Binomial model to Overcome Excess Zeros Count in Motorcycles Road Accident
被引:0
|
作者:
Sapuan, M. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
Sapuan, M. S.
[1
]
Razali, A. M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
Univ Kebangsaan Malaysia, Ctr Modeling & Data Anal DELTA, Ukm Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
Razali, A. M.
[1
,2
]
Zamzuri, Z. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
Univ Kebangsaan Malaysia, Ctr Modeling & Data Anal DELTA, Ukm Bangi 43600, MalaysiaUniv Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
Zamzuri, Z. H.
[1
,2
]
机构:
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Ukm Bangi 43600, Malaysia
[2] Univ Kebangsaan Malaysia, Ctr Modeling & Data Anal DELTA, Ukm Bangi 43600, Malaysia
Motorcycle is becoming one of the most important transportation modes and its intensity usage is increasing tremendously on the roadway. Therefore, problems of its reliability and safety are highly well-defined and discussed. In this paper, the most used model of count data for accident modeling namely Poisson and negative binomial regression are presented along with the zero-augmented model namely zero-inflated Poisson, hurdle Poisson, zero-inflated negative binomial and hurdle negative binomial will be fitted to a real motorcycle road accident data. The model validation result shows that zero-inflated negative binomial fit the data well and the highest traffic offenses and locations factors are determined.
机构:
Islamic Azad Univ, Sanandaj Branch, Dept Stat, Sanandaj, IranIslamic Azad Univ, Sanandaj Branch, Dept Stat, Sanandaj, Iran
Faroughi, Pouya
Ismail, Noriszura
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kebangsaan Malaysia, Sch Math Sci, Fac Sci & Technol, Ukm Bangi 43600, Selangor, MalaysiaIslamic Azad Univ, Sanandaj Branch, Dept Stat, Sanandaj, Iran