BREAKDOWN PROPERTIES OF RANDOM-SYSTEMS WITH DISTRIBUTED CONDUCTANCES

被引:3
|
作者
OOTANI, I [1 ]
OHASHI, YH [1 ]
OHASHI, K [1 ]
FUKUCHI, M [1 ]
机构
[1] TAMAGAWA UNIV,FAC ENGN,TOKYO 194,JAPAN
关键词
FRACTURE; SIMULATION; FUSE NETWORK; CRACK; BREAKDOWN VOLTAGE; SIZE EFFECT; RANDOM SYSTEM;
D O I
10.1143/JPSJ.61.1399
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The breakdown problem in a random system is investigated by numerical simulation for a network of distributed conductance The breakdown voltages are studied in the different conductance configurations. The mean breakdown strength shows anomalous size dependence given by < V(b) > proportional-to 1/((ln L))y for L (the linear dimension of the network). The exponent y depends upon a degree of non-uniformity of the system and gives an information on the critical event of the breakdown. For the case of a comparatively homogeneous network the micro-crack nucleation is the critical event of a breakdown. In such a random resistor network funnel defects act as the appropriate critical defects. On the other hand, in the case of strongly disordered system the critical event in a breakdown is attributed to growth of cracks.
引用
收藏
页码:1399 / 1407
页数:9
相关论文
共 50 条
  • [31] ON NONNEGATIVE SOLUTIONS OF RANDOM-SYSTEMS OF LINEAR INEQUALITIES
    BUCHTA, C
    DISCRETE & COMPUTATIONAL GEOMETRY, 1987, 2 (01) : 85 - 95
  • [32] RESPONSE CELL PROBABILITIES FOR NONLINEAR RANDOM-SYSTEMS
    SOONG, TT
    CHUNG, LL
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1985, 52 (01): : 230 - 232
  • [33] ANOMALOUS DYNAMICS OF INTERACTING PARTICLES IN RANDOM-SYSTEMS
    OHTSUKI, T
    KEYES, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (03): : L171 - L174
  • [34] STOCHASTIC QUANTIZATION AND KILLING SYMMETRIES OF RANDOM-SYSTEMS
    ETIM, E
    SCHULKE, L
    PHYSICS LETTERS B, 1987, 187 (1-2) : 141 - 145
  • [35] RENORMALIZATION THEORY AND CHAOS EXPONENTS IN RANDOM-SYSTEMS
    NEYNIFLE, M
    HILHORST, HJ
    PHYSICA A, 1993, 194 (1-4): : 462 - 470
  • [36] THERMODYNAMIC LIMIT IN A STRONGER SENSE FOR RANDOM-SYSTEMS
    MORITA, T
    PHYSICA A, 1979, 99 (1-2): : 184 - 192
  • [37] CONDUCTANCE OF ONE-DIMENSIONAL RANDOM-SYSTEMS
    AZBEL, MY
    HARTSTEIN, A
    DIVINCENZO, D
    PHYSICA B & C, 1984, 127 (1-3): : 252 - 256
  • [38] DISTRIBUTION FUNCTION OF THE INTENSITY OF OPTICAL WAVES IN RANDOM-SYSTEMS
    KOGAN, E
    BAUMGARTNER, R
    BERKOVITS, R
    KAVEH, M
    PHYSICA A, 1993, 200 (1-4): : 469 - 475
  • [39] SCALING AND PHASE-TRANSITIONS IN RANDOM-SYSTEMS
    CIEPLAK, M
    BANAVAR, JR
    PHYSICA A, 1993, 194 (1-4): : 63 - 71
  • [40] RESIDUAL-STRESSES IN PLASTIC RANDOM-SYSTEMS
    ALAVA, MJ
    KARTTUNEN, MEJ
    NISKANEN, KJ
    EUROPHYSICS LETTERS, 1995, 32 (02): : 143 - 148