SACHS-WOLFE EFFECT IN A LOCAL AND GAUGE-INVARIANT FORMALISM

被引:10
|
作者
MAGUEIJO, JCR
机构
[1] Department of Applied Mathematics and Theoretical Physics, University of Cambridge
来源
PHYSICAL REVIEW D | 1993年 / 47卷 / 02期
关键词
D O I
10.1103/PhysRevD.47.R353
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A formula relating the cosmic microwave background temperature anisotropies and the cosmological perturbations responsible for them is derived in a local and gauge-invariant formalism. © 1993 The American Physical Society.
引用
收藏
页码:R353 / R356
页数:4
相关论文
共 50 条
  • [1] COVARIANT AND GAUGE-INVARIANT FORMULATION OF THE SACHS-WOLFE EFFECT
    RUSS, H
    SOFFEL, MH
    XU, CM
    DUNSBY, PKS
    [J]. PHYSICAL REVIEW D, 1993, 48 (10): : 4552 - 4556
  • [2] Gauge-invariant treatment of the integrated Sachs-Wolfe effect on general spherically symmetric spacetimes
    Tomita, Kenji
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)
  • [3] Sachs-Wolfe effect: Gauge independence and a general expression
    Hwang, JC
    Noh, H
    [J]. PHYSICAL REVIEW D, 1999, 59 (06)
  • [4] The Sachs-Wolfe effect
    White, M
    Hu, W
    [J]. ASTRONOMY & ASTROPHYSICS, 1997, 321 (01) : 8 - 9
  • [5] Mapping the integrated Sachs-Wolfe effect
    Manzotti, A.
    Dodelson, S.
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [6] Sachs-Wolfe effect in anisotropic spacetime
    Song, DJ
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S5 - S15
  • [7] A new approach to the Sachs-Wolfe effect
    Mendonca, J. T.
    Bingham, R.
    Wang, C. H-T
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (09)
  • [8] Nonlinear integrated Sachs-Wolfe effect
    Cooray, A
    [J]. PHYSICAL REVIEW D, 2002, 65 (08) : 835181 - 8351811
  • [9] Measuring the integrated Sachs-Wolfe effect
    Dupe, F. -X.
    Rassat, A.
    Starck, J. -L.
    Fadili, M. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 534
  • [10] A detection of the integrated Sachs-Wolfe effect
    Boughn, SP
    Crittenden, RG
    [J]. NEW ASTRONOMY REVIEWS, 2005, 49 (2-6) : 75 - 78