Sachs-Wolfe effect: Gauge independence and a general expression

被引:18
|
作者
Hwang, JC [1 ]
Noh, H
机构
[1] Kyungpook Natl Univ, Dept Astron & Atmospher Sci, Taegu 702701, South Korea
[2] Max Planck Inst Astrophys, D-85740 Garching, Germany
[3] Korea Astron Observ, Yusung Gu, Daejon, South Korea
[4] Max Planck Inst Astrophys, D-85740 Garching, Germany
关键词
D O I
10.1103/PhysRevD.59.067302
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We address two points concerning the Sachs-Wolfe effect: (i) the gauge independence of the observable temperature anisotropy and (ii) a gauge-invariant expression of the effect considering the most general situation of hydrodynamic perturbations. The first result follows because the gauge transformation of the temperature fluctuation at the observation event only contributes to the isotropic temperature change which, in practice, is absorbed into the definition of the background temperature. Thus, we proceed without fixing the gauge condition, and express the Sachs-Wolfe effect using the gauge-invariant variables. [S0556-2821(99)07104-0].
引用
收藏
页数:4
相关论文
共 50 条
  • [1] The Sachs-Wolfe effect
    White, M
    Hu, W
    [J]. ASTRONOMY & ASTROPHYSICS, 1997, 321 (01) : 8 - 9
  • [2] SACHS-WOLFE EFFECT IN A LOCAL AND GAUGE-INVARIANT FORMALISM
    MAGUEIJO, JCR
    [J]. PHYSICAL REVIEW D, 1993, 47 (02): : R353 - R356
  • [3] COVARIANT AND GAUGE-INVARIANT FORMULATION OF THE SACHS-WOLFE EFFECT
    RUSS, H
    SOFFEL, MH
    XU, CM
    DUNSBY, PKS
    [J]. PHYSICAL REVIEW D, 1993, 48 (10): : 4552 - 4556
  • [4] Gauge-invariant treatment of the integrated Sachs-Wolfe effect on general spherically symmetric spacetimes
    Tomita, Kenji
    [J]. PHYSICAL REVIEW D, 2010, 81 (06)
  • [5] Mapping the integrated Sachs-Wolfe effect
    Manzotti, A.
    Dodelson, S.
    [J]. PHYSICAL REVIEW D, 2014, 90 (12):
  • [6] Sachs-Wolfe effect in anisotropic spacetime
    Song, DJ
    [J]. JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S5 - S15
  • [7] A new approach to the Sachs-Wolfe effect
    Mendonca, J. T.
    Bingham, R.
    Wang, C. H-T
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (09)
  • [8] Nonlinear integrated Sachs-Wolfe effect
    Cooray, A
    [J]. PHYSICAL REVIEW D, 2002, 65 (08) : 835181 - 8351811
  • [9] Measuring the integrated Sachs-Wolfe effect
    Dupe, F. -X.
    Rassat, A.
    Starck, J. -L.
    Fadili, M. J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2011, 534
  • [10] A detection of the integrated Sachs-Wolfe effect
    Boughn, SP
    Crittenden, RG
    [J]. NEW ASTRONOMY REVIEWS, 2005, 49 (2-6) : 75 - 78