ORDER-TOPOLOGICAL COMPLETE ORTHOMODULAR LATTICES

被引:13
|
作者
ERNE, M
RIECANOVA, Z
机构
[1] UNIV HANNOVER, DEPT MATH, D-30167 HANNOVER, GERMANY
[2] SLOVAK UNIV TECHNOL BRATISLAVA, FAC ELECTROTECH, DEPT MATH, BRATISLAVA, SLOVAKIA
关键词
ORTHO(MODULAR) LATTICE; ORDER CONVERGENCE; ORDER TOPOLOGY; ORDER-TOPOLOGICAL; CONTINUOUS; COMPACT; COMPACTLY GENERATED; ATOMISTIC; TOTALLY ORDER DISCONNECTED;
D O I
10.1016/0166-8641(94)00040-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A lattice is order-topological iff its order convergence is topological and makes the lattice operations continuous. We show that the following properties are equivalent for any complete orthomodular lattice L: (i) L is order-topological, (ii) L is continuous (in the sense of Scott), (iii) L is algebraic, (iv) L is compactly atomistic, (v) L is a totally order-disconnected topological lattice in the order topology. A special class of complete order-topological orthomodular lattices, namely the compact topological orthomodular lattices, are characterized by various algebraic conditions, for example, by the existence of a join-dense subset of so-called hypercompact elements.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [21] Weakly Orthomodular and Dually Weakly Orthomodular Lattices
    Chajda, Ivan
    Laenger, Helmut
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2018, 35 (03): : 541 - 555
  • [22] Orthomodular Lattices and Quantales
    Leopoldo Román
    International Journal of Theoretical Physics, 2005, 44 : 783 - 791
  • [23] Subalgebras of Orthomodular Lattices
    Harding, John
    Navara, Mirko
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2011, 28 (03): : 549 - 563
  • [24] Decidability in Orthomodular Lattices
    Marek Hyčko
    Mirko Navara
    International Journal of Theoretical Physics, 2005, 44 : 2239 - 2248
  • [25] MINIMAL ORTHOMODULAR LATTICES
    CARREGA, JC
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (08) : 1265 - 1270
  • [26] Orthomodular lattices and quantales
    Román, L
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2005, 44 (07) : 783 - 791
  • [27] VARIETIES OF ORTHOMODULAR LATTICES
    BRUNS, G
    KALMBACH, G
    CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (05): : 802 - &
  • [28] Relatively orthomodular lattices
    Hedlíková, J
    DISCRETE MATHEMATICS, 2001, 234 (1-3) : 17 - 38
  • [29] PROJECTIVE ORTHOMODULAR LATTICES
    BRUNS, G
    RODDY, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (02): : 145 - 153
  • [30] A Note on Orthomodular Lattices
    S. Bonzio
    I. Chajda
    International Journal of Theoretical Physics, 2017, 56 : 3740 - 3743