A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations

被引:2
|
作者
Kim, Yongku [1 ]
机构
[1] Kyungpook Natl Univ, Dept Stat, 80 Daehak Ro, Daegu 702701, South Korea
基金
新加坡国家研究基金会;
关键词
Bayesian analysis; daily precipitation; extremes; generalized extreme value distribution; return level; temporal trend;
D O I
10.5351/KJAS.2015.28.2.137
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.
引用
收藏
页码:137 / 149
页数:13
相关论文
共 50 条
  • [1] Bayesian spatial modeling of extreme precipitation return levels
    Cooley, Daniel
    Nychka, Douglas
    Naveau, Philippe
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (479) : 824 - 840
  • [2] Bayesian hierarchical modeling of extreme hourly precipitation in Norway
    Dyrrdal, Anita Verpe
    Lenkoski, Alex
    Thorarinsdottir, Thordis L.
    Stordal, Frode
    [J]. ENVIRONMETRICS, 2015, 26 (02) : 89 - 106
  • [3] A hierarchical Bayesian spatio-temporal model for extreme precipitation events
    Ghosh, Souparno
    Mallick, Bani K.
    [J]. ENVIRONMETRICS, 2011, 22 (02) : 192 - 204
  • [4] Hierarchical Bayesian modeling of highway bridge network extreme traffic loading
    Rizqiansyah, Akbar
    Caprani, Colin C.
    [J]. STRUCTURAL SAFETY, 2024, 111
  • [5] A Bayesian hierarchical spatio-temporal model for extreme rainfall in Extremadura (Spain)
    Garcia, J. A.
    Martin, J.
    Naranjo, L.
    Acero, F. J.
    [J]. HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2018, 63 (06): : 878 - 894
  • [6] A Bayesian hierarchical spatio-temporal model for summer extreme temperatures in Spain
    Garcia, Jose Agustin
    Acero, Francisco Javier
    Martinez-Pizarro, Mario
    Lara, Manuel
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2024, 38 (09) : 3393 - 3410
  • [7] Bayesian Spatio-temporal Hierarchical Modeling in Wind Speed Data
    Lee, Chee Nian
    Ong, Hong Choon
    [J]. PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM24): MATHEMATICAL SCIENCES EXPLORATION FOR THE UNIVERSAL PRESERVATION, 2017, 1870
  • [8] Technical note: Modeling spatial fields of extreme precipitation - a hierarchical Bayesian approach
    Rahill-Marier, Bianca
    Devineni, Naresh
    Lall, Upmanu
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (21) : 5685 - 5695
  • [9] A hierarchical Bayesian approach to the spatio-temporal modeling of air quality data
    Riccio, A
    Barone, G
    Chianese, E
    Giunta, G
    [J]. ATMOSPHERIC ENVIRONMENT, 2006, 40 (03) : 554 - 566
  • [10] Hierarchical Bayesian Spatio-Temporal Modeling for PM10 Prediction
    Mahdi, Esam
    Alshamari, Sana
    Khashabi, Maryam
    Alkorbi, Alya
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2021, 2021