Bayesian spatial modeling of extreme precipitation return levels

被引:348
|
作者
Cooley, Daniel [1 ]
Nychka, Douglas
Naveau, Philippe
机构
[1] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[2] Natl Ctr Atmospher Res, Geophys Stat Project, Boulder, CO 80307 USA
[3] Natl Ctr Atmospher Res, Inst Math Geosci, Boulder, CO 80307 USA
[4] CNRS, IPSL, Lab Sci Climat & Environm, Gif Sur Yvette, France
[5] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Colorado; extreme value theory; generalized Pareto distribution; hierarchical model; latent process;
D O I
10.1198/016214506000000780
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantification of precipitation extremes is important for flood planning purposes, and a common measure of extreme events is the r-year return level. We present a method for producing maps of precipitation return levels and uncertainty measures and apply it to a region in Colorado. Separate hierarchical models are constructed for the intensity and the frequency of extreme precipitation events. For intensity, we model daily precipitation above a high threshold at 56 weather stations with the generalized Pareto distribution. For frequency, we model the number of exceedances at the stations as binomial random variables. Both models assume that the regional extreme precipitation is driven by a latent spatial process characterized by geographical and climatological covariates. Effects not fully described by the covariates are captured by spatial structure in the hierarchies. Spatial methods were improved by working in a space with climatological coordinates. Inference is provided by a Markov chain Monte Carlo algorithm and spatial interpolation method, which provide a natural method for estimating uncertainty.
引用
收藏
页码:824 / 840
页数:17
相关论文
共 50 条
  • [2] A spatial and seasonal climatology of extreme precipitation return-levels: A case study
    Fischer, M.
    Rust, H. W.
    Ulbrich, U.
    [J]. SPATIAL STATISTICS, 2019, 34
  • [3] A Bayesian Analysis of Return Level for Extreme Precipitation in Korea
    Lee, Jeong Jin
    Kim, Nam Hee
    Kwon, Hye Ji
    Kim, Yongku
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2014, 27 (06) : 947 - 958
  • [4] Technical note: Modeling spatial fields of extreme precipitation - a hierarchical Bayesian approach
    Rahill-Marier, Bianca
    Devineni, Naresh
    Lall, Upmanu
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (21) : 5685 - 5695
  • [5] Spatial interpolation of the extreme hourly precipitation at different return levels in the Haihe River basin
    Zou, Wen-yue
    Yin, Shui-qing
    Wang, Wen-ting
    [J]. JOURNAL OF HYDROLOGY, 2021, 598
  • [6] Bayesian Spatial Modeling of Precipitation Data
    Heo, Tae-Young
    Park, Man Sik
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (02) : 425 - 433
  • [7] Bayesian hierarchical modeling of extreme hourly precipitation in Norway
    Dyrrdal, Anita Verpe
    Lenkoski, Alex
    Thorarinsdottir, Thordis L.
    Stordal, Frode
    [J]. ENVIRONMETRICS, 2015, 26 (02) : 89 - 106
  • [8] Smooth Spatial Modeling of Extreme Mediterranean Precipitation
    Hammami, Hela
    Carreau, Julie
    Neppel, Luc
    Elasmi, Sadok
    Feki, Haifa
    [J]. WATER, 2022, 14 (22)
  • [9] Extreme precipitation return levels for multiple durations on a global scale
    Grundemann, Gaby J.
    Zorzetto, Enrico
    Beck, Hylke E.
    Schleiss, Marc
    van de Giesen, Nick
    Marani, Marco
    van der Ent, Ruud J.
    [J]. JOURNAL OF HYDROLOGY, 2023, 621
  • [10] A Bayesian spatial hierarchical model for extreme precipitation in Great Britain
    Sharkey, Paul
    Winter, Hugo C.
    [J]. ENVIRONMETRICS, 2019, 30 (01)