ISOLATED UNSTABLE PERIODIC ORBITS

被引:0
|
作者
CHURCHIL.RC
PECELLI, G
ROD, DL
机构
[1] SUNY, ALBANY, NY 12222 USA
[2] CITY UNIV NEW YORK, HUNTER COLL, NEW YORK, NY 10021 USA
[3] UNIV CALGARY, CALGARY T2N 1N4, ALBERTA, CANADA
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:A134 / A134
页数:1
相关论文
共 50 条
  • [41] Unstable periodic orbits and sensitivity of the barotropic model of the atmosphere
    Gritsun, A. S.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2010, 25 (04) : 303 - 321
  • [42] Prevalence of marginally unstable periodic orbits in chaotic billiards
    Altmann, E. G.
    Friedrich, T.
    Motter, A. E.
    Kantz, H.
    Richter, A.
    [J]. PHYSICAL REVIEW E, 2008, 77 (01):
  • [43] Stabilization of unstable periodic orbits of chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    [J]. NONLINEAR DYNAMICS IN THE LIFE AND SOCIAL SCIENCES, 2001, 320 : 33 - 44
  • [44] Genesis and bifurcations of unstable periodic orbits in a jet flow
    Uleysky, M. Yu
    Budyansky, M. V.
    Prants, S. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (21)
  • [45] Marginally Unstable Periodic Orbits in Semiclassical Mushroom Billiards
    Andreasen, Jonathan
    Cao, Hui
    Wiersig, Jan
    Motter, Adilson E.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (15)
  • [46] Testing for unstable periodic orbits to characterize spatiotemporal dynamics
    Zoller, G
    Engbert, R
    Hainzl, S
    Kurths, J
    [J]. CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1429 - 1438
  • [47] Extracting dynamical structure from unstable periodic orbits
    Dolan, KT
    [J]. PHYSICAL REVIEW E, 2001, 64 (02) : 9 - 262139
  • [48] Detecting unstable periodic orbits in switched arrival systems
    Tian, YP
    [J]. 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 1884 - 1888
  • [49] Stabilization of arbitrary unstable periodic orbits of nonlinear systems
    Grosu, I
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 853 - 863
  • [50] CHARACTERIZATION OF THE LORENZ ATTRACTOR BY UNSTABLE PERIODIC-ORBITS
    FRANCESCHINI, V
    GIBERTI, C
    ZHENG, ZM
    [J]. NONLINEARITY, 1993, 6 (02) : 251 - 258