A NON-GAUSSIAN MARKOVIAN MODEL TO SIMULATE HYDROLOGIC PROCESSES

被引:0
|
作者
VALADARESTAVARES, L [1 ]
机构
[1] CESUR, IST, P-1000 LISBON, PORTUGAL
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
引用
收藏
页码:281 / 287
页数:7
相关论文
共 50 条
  • [1] Persistence distributions for non-Gaussian Markovian processes
    Farago, J
    [J]. EUROPHYSICS LETTERS, 2000, 52 (04): : 379 - 385
  • [2] An algorithm to simulate nonstationary and non-Gaussian stochastic processes
    Hong, H.P.
    Cui, X.Z.
    Qiao, D.
    [J]. Journal of Infrastructure Preservation and Resilience, 2021, 2 (01):
  • [3] LQ Non-Gaussian Regulator With Markovian Control
    Battilotti, Stefano
    Cacace, Filippo
    d'Angelo, Massimiliano
    Germani, Alfredo
    Sinopoli, Bruno
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 679 - 684
  • [4] Gaussian and non-Gaussian Behaviour of Diffusion Processes
    Robinson, Derek W.
    [J]. OPERATOR SEMIGROUPS MEET COMPLEX ANALYSIS, HARMONIC ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 250 : 463 - 481
  • [5] A translation model for non-stationary, non-Gaussian random processes
    Ferrante, FJ
    Arwade, SR
    Graham-Brady, LL
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2005, 20 (03) : 215 - 228
  • [6] Simulating Non-Gaussian Stationary Stochastic Processes by Translation Model
    Xiao, Qing
    Zhou, Shaowu
    [J]. IEEE ACCESS, 2019, 7 : 34555 - 34569
  • [7] Fault Detection of Non-Gaussian Processes Based on Model Migration
    Zhang, Yingwei
    An, Jiayu
    Ma, Chi
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (05) : 1517 - 1526
  • [8] A Monte Carlo simulation model for stationary non-Gaussian processes
    Grigoriu, A
    Ditlevsen, O
    Arwade, SR
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2003, 18 (01) : 87 - 95
  • [9] NON-GAUSSIAN, NON-MARKOV PROCESSES
    EVANS, MW
    GRIGOLINI, P
    [J]. JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1980, 76 : 761 - 766
  • [10] CROSSINGS OF NON-GAUSSIAN TRANSLATION PROCESSES
    GRIGORIU, M
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1984, 110 (04): : 610 - 620