LQ Non-Gaussian Regulator With Markovian Control

被引:9
|
作者
Battilotti, Stefano [1 ]
Cacace, Filippo [2 ]
d'Angelo, Massimiliano [1 ]
Germani, Alfredo [3 ]
Sinopoli, Bruno [4 ]
机构
[1] Sapienza Univ Roma, Dipartimento Ingn Informat Automat & Gest, I-00186 Rome, Italy
[2] Univ Campus Biomed Roma, I-00144 Rome, Italy
[3] Univ Aquila, Dipartimento Ingn & Sci Informaz Matemat, I-67100 Laquila, Italy
[4] Washington Univ, Elect & Syst Engn Dept, St Louis, MO 63130 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2019年 / 3卷 / 03期
关键词
Optimal control; LQG regulator; Kalman filtering; non-Gaussian systems;
D O I
10.1109/LCSYS.2019.2916287
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter concerns the linear quadratic non-Gaussian (LQnG) sub-optimal control problem when the input signal travels through an unreliable network, namely a Gilbert-Elliot channel. In particular, the control input packet losses are modeled by a two-state Markov chain with known transition probability matrix, and we assume that the moments of the non-Gaussian noise sequences up to the fourth order are known. By mean of a suitable rewriting of the system through an output injection term, and by considering an augmented system with the second-order Kronecker power of the measurements, a simple solution is provided by substituting the Kalman predictor of the LQG control law with a quadratic optimal predictor. Numerical simulations show the effective ness of the proposed method.
引用
收藏
页码:679 / 684
页数:6
相关论文
共 50 条
  • [1] The polynomial approach to the LQ non-Gaussian regulator problem
    Germani, A
    Mavelli, G
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2002, 47 (08) : 1385 - 1391
  • [2] An Improved Approach to the LQ non-Gaussian Regulator Problem
    Battilotti, S.
    Cacace, F.
    d'Angelo, M.
    Germani, A.
    [J]. IFAC PAPERSONLINE, 2017, 50 (01): : 11808 - 11813
  • [3] The Polynomial Approach to the LQ Non-Gaussian Regulator Problem Through Output Injection
    Battilotti, Stefano
    Cacace, Filippo
    d'Angelo, Massimiliano
    Germani, Alfredo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (02) : 538 - 552
  • [4] LQ non-Gaussian Control with I/O packet losses
    Battilotti, Stefano
    Cacace, Filippo
    d'Angelo, Massimiliano
    Germani, Alfredo
    Sinopoli, Bruno
    [J]. 2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 2802 - 2807
  • [5] Persistence distributions for non-Gaussian Markovian processes
    Farago, J
    [J]. EUROPHYSICS LETTERS, 2000, 52 (04): : 379 - 385
  • [6] A NON-GAUSSIAN MARKOVIAN MODEL TO SIMULATE HYDROLOGIC PROCESSES
    VALADARESTAVARES, L
    [J]. JOURNAL OF HYDROLOGY, 1980, 46 (3-4) : 281 - 287
  • [7] A Gaussian Mixture Smoother for Markovian Jump Linear Systems with non-Gaussian Noises
    Yang, Yanbo
    Qin, Yuemei
    Yang, Yanting
    Pan, Quan
    Li, Zhi
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2564 - 2571
  • [8] PERFORMANCE ANALYSIS OF LINEAR REGULATORS WITH NON-GAUSSIAN MARKOVIAN DISTURBANCES
    CEGLA, UG
    SHINNAR, R
    GRAUPE, D
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1975, 6 (07) : 653 - 664
  • [9] Control charts for non-Gaussian distributions
    Babus, Florina
    Kobi, Abdessamad
    Tiplica, Th.
    Bacivarov, Ioan
    Bacivarov, Angelica
    [J]. ADVANCED TOPICS IN OPTOELECTRONICS, MICROELECTRONICS, AND NANOTECHNOLOGIES III, 2007, 6635
  • [10] Power Control for non-Gaussian Interference
    Chen, Yi
    Wong, Wing Shing
    [J]. 2009 7TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS, 2009, : 161 - 168