Composite anodes for lithium-ion batteries: status and trends

被引:27
|
作者
Mauger, Alain [1 ]
Xie, Haiming [2 ]
Julien, Christian M. [3 ]
机构
[1] Univ UPMC, Sorbonne Univ, Paris 6, IMPMC, 4 Pl Jussieu, F-75252 Paris, France
[2] Northeast Normal Univ, Natl & Local United Engn, Lab Power Batteries, 5268 Renmin Str, Changchun, Peoples R China
[3] Univ UPMC, Paris 6, Physicochim Electrolytes & Nanosyst Interfaciaux, Sorbonne Univ,UMR 8234, 4 Pl Jussieu, F-75005 Paris, France
关键词
composites; anode materials; conversion reaction; alloying; intercalation; Li-ion batteries;
D O I
10.3934/matersci.2016.3.1054
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presently, the negative electrodes of lithium-ion batteries (LIBs) is constituted by carbon-based materials that exhibit a limited specific capacity 372 mAh g(-1) associated with the cycle between C and LiC6. Therefore, many efforts are currently made towards the technological development nanostructured materials in which the electrochemical processes occurs as intercalation, alloying or conversion reactions with a good accommodation of dilatation/contraction during cycling. In this review, attention is focused on advanced anode composite materials based on carbon, silicon, germanium, tin, titanium and conversion anode composite based on transition-metal oxides.
引用
收藏
页码:1054 / 1106
页数:53
相关论文
共 50 条
  • [41] Dendrite formation in silicon anodes of lithium-ion batteries
    Selis, Luis A.
    Seminario, Jorge M.
    [J]. RSC ADVANCES, 2018, 8 (10) : 5255 - 5267
  • [42] Insights into the Li Diffusion Mechanism in Si/C Composite Anodes for Lithium-Ion Batteries
    Gao, Xiang
    Lu, Wenquan
    Xu, Jun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (18) : 21362 - 21370
  • [43] Enhanced Electrochemical Properties of γ-MnS@rGO Composite as Anodes for Lithium-Ion Batteries
    Nam, Wonbin
    Seong, Honggyu
    Moon, Joon Ha
    Jin, Youngho
    Kim, Geongil
    Yoo, Hyerin
    Jung, Taejung
    Yang, MinHo
    Cho, Se Youn
    Choi, Jaewon
    [J]. BATTERIES & SUPERCAPS, 2023, 6 (11)
  • [44] Microwave Derived Facile Approach to Sn/Graphene Composite Anodes for, Lithium-Ion Batteries
    Beck, Faith R.
    Epur, Rigved
    Hong, Daeho
    Manivannan, Ayyakkannu
    Kumta, Prashant N.
    [J]. ELECTROCHIMICA ACTA, 2014, 127 : 299 - 306
  • [45] Extreme Rate Capability Cycling of Porous Silicon Composite Anodes for Lithium-Ion Batteries
    Dhanabalan, Abirami
    Song, Botao Farren
    Biswal, Sibani Lisa
    [J]. CHEMELECTROCHEM, 2021, 8 (17): : 3318 - 3325
  • [46] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Qinghui Zeng
    Yongteng Dong
    Yuanmao Chen
    Xinyang Yue
    Zheng Liang
    [J]. Science China(Chemistry), 2024, 67 (12) : 3952 - 3963
  • [47] High Reversible Capacity Si/C Composite Anodes for Lithium-Ion Rechargeable Batteries
    Qi Peng
    Chen Yungui
    Zhu Ding
    Xu Chenghao
    Huang Lihong
    Duan Xiaobo
    [J]. RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (05) : 1073 - 1078
  • [48] Recent advancements and perspectives of fast-charging composite anodes for lithium-ion batteries
    Zeng, Qinghui
    Dong, Yongteng
    Chen, Yuanmao
    Yue, Xinyang
    Liang, Zheng
    [J]. SCIENCE CHINA-CHEMISTRY, 2024,
  • [49] Sustainable Silica-Carbon Nanofiber Hybrid Composite Anodes for Lithium-Ion Batteries
    Beaucamp, Anne
    Calvo, Amaia Moreno
    Bowman, Deaglan
    Techouyeres, Clotilde
    Nulty, David Mc
    Lizundia, Erlantz
    Collins, Maurice N.
    [J]. MACROMOLECULAR MATERIALS AND ENGINEERING, 2024,
  • [50] Low Surface Area Si Alloy/Ionomer Composite Anodes for Lithium-Ion Batteries
    Zhao, Xiuyun
    Dunlap, R. A.
    Obrovac, M. N.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (14) : A1976 - A1980