BRAIN-AGE QUOTIENT - AGE AND EDUCATION CORRELATES

被引:0
|
作者
HORTON, AM
ANILANE, J
BJERKLIE, GL
机构
[1] UNIV MARYLAND,SCH MED,BALTIMORE,MD 21201
[2] BALTIMORE DEPT VET AFFAIRS MED CTR,BALTIMORE,MD
关键词
D O I
10.2466/PMS.74.2.561-562
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The Brain-Age Quotient (BAQ) of Reitan has been proposed as a means of studying age-related cognitive differences. This study examined age and education correlates of the BAQ and a BAQ short form. A heterogeneous group of 100 subjects were selected from the neuropsychological testing case records published by Golden, Osmon, Moses, and Berg in 1981, Boll (undated), and Reitan (undated). Results suggest, the BAQ and the BAQ short form are not significantly correlated with age and education.
引用
收藏
页码:561 / 562
页数:2
相关论文
共 50 条
  • [41] From 'loose fitting' to high-performance, uncertainty-aware brain-age modelling
    Hahn, Tim
    Fisch, Lukas
    Ernsting, Jan
    Winter, Nils R.
    Leenings, Ramona
    Sarink, Kelvin
    Emden, Daniel
    Kircher, Tilo
    Berger, Klaus
    Dannlowski, Udo
    [J]. BRAIN, 2021, 144 (03)
  • [42] The brain-age framework in Parkinson's disease: Evaluating MRI morphometry and sex-dimorphism
    Gonzalez-Escamilla, G.
    Farag, P.
    Bange, M.
    Groppa, S.
    [J]. MOVEMENT DISORDERS, 2022, 37 : S70 - S71
  • [43] Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort
    Elliott, Maxwell L.
    Belsky, Daniel W.
    Knodt, Annchen R.
    Ireland, David
    Melzer, Tracy R.
    Poulton, Richie
    Ramrakha, Sandhya
    Caspi, Avshalom
    Moffitt, Terrie E.
    Hariri, Ahmad R.
    [J]. MOLECULAR PSYCHIATRY, 2021, 26 (08) : 3829 - 3838
  • [44] Cortical development in fetuses with congenital heart defects using an automated brain-age prediction algorithm
    Everwijn, Sheila M. P.
    Namburete, Ana I. L.
    van Geloven, Nan
    Jansen, Fenna A. R.
    Papageorghiou, Aris T.
    Noble, Alison J.
    Teunissen, Aalbertine K. K.
    Rozendaal, Lieke
    Blom, Nico A.
    van Lith, Jan M. M.
    Haak, Monique C.
    [J]. ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2019, 98 (12) : 1595 - 1602
  • [45] Neuroimaging-based brain-age prediction in diverse forms of epilepsy: a signature of psychosis and beyond
    Daichi Sone
    Iman Beheshti
    Norihide Maikusa
    Miho Ota
    Yukio Kimura
    Noriko Sato
    Matthias Koepp
    Hiroshi Matsuda
    [J]. Molecular Psychiatry, 2021, 26 : 825 - 834
  • [46] Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort
    Maxwell L. Elliott
    Daniel W. Belsky
    Annchen R. Knodt
    David Ireland
    Tracy R. Melzer
    Richie Poulton
    Sandhya Ramrakha
    Avshalom Caspi
    Terrie E. Moffitt
    Ahmad R. Hariri
    [J]. Molecular Psychiatry, 2021, 26 : 3829 - 3838
  • [47] A reusable benchmark of brain-age prediction from M/EEG resting-state signals
    Engemann, Denis A.
    Mellot, Apolline
    Hochenberger, Richard
    Banville, Hubert
    Sabbagh, David
    Gemein, Lukas
    Ball, Tonio
    Gramfort, Alexandre
    [J]. NEUROIMAGE, 2022, 262
  • [48] BRAIN-AGE QUOTIENTS IN RECENTLY DETOXIFIED ALCOHOLIC, RECOVERED ALCOHOLIC AND NON-ALCOHOLIC WOMEN
    HOCHLA, NAN
    FABIAN, MS
    PARSONS, OA
    [J]. JOURNAL OF CLINICAL PSYCHOLOGY, 1982, 38 (01) : 207 - 212
  • [49] The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D Convolutional Neural Networks
    Cali, Ryan J.
    Bhatt, Ravi R.
    Thomopoulos, Sophia, I
    Gadewar, Shruti
    Gari, Iyad Ba
    Chattopadhyay, Tamoghna
    Jahanshad, Neda
    Thompson, Paul M.
    [J]. 2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [50] Reply: From 'loose fitting' to high-performance, uncertainty-aware brain-age modelling
    Bashyam, Vishnu
    Shou, Haochang
    Davatzikos, Christos
    [J]. BRAIN, 2021, 144 (03)