CIRCULANT PRECONDITIONERS FOR COMPLEX TOEPLITZ MATRICES

被引:21
|
作者
CHAN, RH
YEUNG, MC
机构
[1] Univ of Hong Kong, Hong Kong
关键词
TOEPLITZ MATRIX; CIRCULANT MATRIX; PRECONDITIONED CONJUGATE GRADIENT METHOD; GENERATING FUNCTION;
D O I
10.1137/0730062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solution of n-by-n complex Toeplitz systems A(n)x = b by the preconditioned conjugate gradient method is studied. The preconditioner C(n) is the circulant matrix that minimizes \\ B(n) - A(n)\\F over all circulant matrices B(n). The authors prove that if the generating function of A(n) is a 2pi-periodic continuous complex-valued function without any zeros, then the spectrum of the normalized preconditioned matrix (C(n)-1A(n))*(C(n)-1A(n)) will be clustered around one. Hence they show that if the condition number of A(n) is of O(n(alpha)), the conjugate gradient method, when applied to solving the normalized preconditioned system, converges in at most O(alpha log n + 1) steps. Thus the total complexity of the algorithm is O(alphan log2 n + n log n).
引用
收藏
页码:1193 / 1207
页数:15
相关论文
共 50 条
  • [21] Preconditioners for Ill-Conditioned Toeplitz Matrices
    Daniel Potts
    Gabriele Steidl
    BIT Numerical Mathematics, 1999, 39 : 513 - 533
  • [22] Preconditioners for ill-conditioned Toeplitz matrices
    Potts, D
    Steidl, G
    BIT, 1999, 39 (03): : 513 - 533
  • [23] Approximate Inverse Preconditioners for solving Toeplitz matrices
    Huang, Zhuohong
    Huang, Tingzhu
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 259 - 262
  • [24] CIRCULANT AND SKEW-CIRCULANT PRECONDITIONERS FOR SKEW-HERMITIAN-TYPE TOEPLITZ-SYSTEMS
    CHAN, RH
    JIN, XQ
    BIT, 1991, 31 (04): : 632 - 646
  • [25] A DECOMPOSITION OF TOEPLITZ MATRICES AND OPTIMAL CIRCULANT PRECONDITIONING
    TISMENETSKY, M
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 : 105 - 121
  • [26] Practical Compressive Sensing with Toeplitz and Circulant Matrices
    Yin, Wotao
    Morgan, Simon
    Yang, Junfeng
    Zhang, Yin
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [27] Circulant and toeplitz chaotic matrices in compressed sensing
    Gan, Hongping
    Cheng, Zhengfu
    Yang, Shouliang
    Liao, Changrong
    Xia, Jihong
    Lei, Mingdong
    Journal of Computational Information Systems, 2015, 11 (04): : 1231 - 1238
  • [28] Factorized banded inverse preconditioners for matrices with Toeplitz structure
    Lin, FR
    Mg, MK
    Ching, WK
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (06): : 1852 - 1870
  • [30] Regularizing inverse preconditioners for symmetric band Toeplitz matrices
    Favati, P.
    Lotti, G.
    Menchi, O.
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2007, 2007 (1)