A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING

被引:315
|
作者
CARLIN, BP
POLSON, NG
STOFFER, DS
机构
[1] UNIV CHICAGO,GRAD SCH BUSINESS,CHICAGO,IL 60637
[2] UNIV PITTSBURGH,DEPT MATH & STAT,PITTSBURGH,PA 15260
[3] CARNEGIE MELLON UNIV,DEPT STAT,PITTSBURGH,PA 15213
关键词
FORECASTING; GIBBS SAMPLER; KALMAN FILTER; SMOOTHING;
D O I
10.2307/2290282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal errors and nonlinear functionals in the state equation, the observational equation, or both. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The methodology is a general strategy for obtaining marginal posterior densities of coefficients in the model or of any of the unknown elements of the state space. Missing data problems (including the k-step ahead prediction problem) also are easily incorporated into this framework. We illustrate the broad applicability of our approach with two examples: a problem involving nonnormal error distributions in a linear model setting and a one-step ahead prediction problem in a situation where both the state and observational equations are nonlinear and involve unknown parameters.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 50 条
  • [21] MONTE-CARLO ESTIMATION FOR GUARANTEED-COVERAGE NONNORMAL TOLERANCE INTERVALS
    CHEN, HF
    SCHMEISER, BW
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1995, 51 (2-4) : 223 - 238
  • [22] Monte Carlo Inference for State-Space Models of Wild Animal Populations
    Newman, Ken B.
    Fernandez, Carmen
    Thomas, Len
    Buckland, Stephen T.
    BIOMETRICS, 2009, 65 (02) : 572 - 583
  • [23] SEQUENTIAL MONTE CARLO OPTIMIZATION USING ARTIFICIAL STATE-SPACE MODELS
    Migue, Joaquin
    Maiz, Cristina S.
    Djuric, Petar M.
    Crisan, Dan
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 268 - +
  • [24] Monte Carlo fixed-lag smoothing in state-space models
    Cuzol, A.
    Memin, E.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (03) : 633 - 643
  • [25] A MONTE-CARLO APPROACH TO DIFFUSION
    HAGERSTRAND, T
    ARCHIVES EUROPEENNES DE SOCIOLOGIE, 1965, 6 (01): : 43 - 67
  • [26] OPTIONS - MONTE-CARLO APPROACH
    BOYLE, PP
    JOURNAL OF FINANCIAL ECONOMICS, 1977, 4 (03) : 323 - 338
  • [27] MONTE-CARLO APPROACH TO SCHEDULING
    RAESIDE, DE
    TRAUB, SP
    RADIOLOGY, 1974, 110 (03) : 735 - 735
  • [28] A recursive recomputation approach for smoothing in nonlinear state-space modeling: An attempt for reducing space complexity
    Nakamura, Kazuyuki
    Tsuchiya, Takashi
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (11) : 5167 - 5178
  • [29] Monte-Carlo System Modeling for PET Reconstruction: a Rotator Approach
    Zhang, Long
    Vandenberghe, Stefaan
    Staelens, Steven
    Verhaeghe, J.
    Kawrakow, Iwan
    Lemahieu, Ignace
    2008 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (2008 NSS/MIC), VOLS 1-9, 2009, : 4367 - +
  • [30] Maximum—A Posteriori Estimation of Linear Time-Invariant State-Space Models via Efficient Monte-Carlo Sampling
    Mejari, Manas
    Piga, Dario
    ASME Letters in Dynamic Systems and Control, 2022, 2 (01):