THE PATCHING IN NEO-HOOKEAN MEMBRANES

被引:0
|
作者
LEE, TP
机构
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A nonlinearly elastic membrane is patched into the hole in an infinite membrane and then sufficient stretching is applied. A model of complex variable for the general patching problem is developed in the context of finite plane stress theory. Neo-Hookean material is assumed for both membranes. Arbitrary initial configuration of the inner membrane as well as that of the hole in infinite membrane may be simulated by two independent conformal mappings. A second approximation closed form solution is obtained from successive substitutions. Two examples are demonstrated.
引用
收藏
页码:1575 / 1588
页数:14
相关论文
共 50 条
  • [31] Deployment of a Neo-Hookean membrane: experimental and numerical analysis
    Al-Bahkali, Essam A.
    Erchiqui, Fouad
    Moatamedi, M.
    Souli, Mhamed
    INTERNATIONAL JOURNAL OF MULTIPHYSICS, 2013, 7 (01) : 41 - 51
  • [32] Shear stiffness of neo-Hookean materials with spherical voids
    Guo, Zaoyang
    Chen, Yang
    Peng, Xiongqi
    Shi, Xiaohao
    Li, Haitao
    Chen, Yuli
    COMPOSITE STRUCTURES, 2016, 150 : 21 - 27
  • [33] ON PSEUDO-PLANE DEFORMATIONS FOR THE NEO-HOOKEAN MATERIAL
    HILL, JM
    SHIELD, RT
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1986, 37 (01): : 104 - 113
  • [34] On extreme thinning at the notch tip of a neo-Hookean sheet
    Tarantino, AM
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 1998, 51 : 179 - 190
  • [35] Some results for generalized neo-Hookean elastic materials
    Wineman, A
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (2-3) : 271 - 279
  • [36] An invariant-free formulation of neo-Hookean hyperelasticity
    Kellermann, David C.
    Attard, Mario M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (02): : 233 - 252
  • [37] On non-symmetric deformations of neo-Hookean solids
    Warne, DP
    Warne, PG
    JOURNAL OF ELASTICITY, 1998, 50 (03) : 209 - 225
  • [38] Analysis of the compressible, isotropic, neo-Hookean hyperelastic model
    Attila Kossa
    Megan T. Valentine
    Robert M. McMeeking
    Meccanica, 2023, 58 : 217 - 232
  • [39] FINITE-AMPLITUDE VIBRATIONS OF A NEO-HOOKEAN OSCILLATOR
    BEATTY, MF
    QUARTERLY OF APPLIED MATHEMATICS, 1986, 44 (01) : 19 - 34
  • [40] Modeling the Isotropic Growth of an Incompressible Neo-Hookean Material
    Plotnikov P.I.
    Journal of Applied and Industrial Mathematics, 2021, 15 (04) : 647 - 657