EFFECTIVE POTENTIAL FOR SPIN BOSON SYSTEMS AND QUASI-EXACTLY SOLVABLE PROBLEMS

被引:13
|
作者
ZASLAVSKII, OB
机构
[1] Department of Physics, Kharkov State University, Kharkov
关键词
D O I
10.1016/0375-9601(90)90894-T
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The correspondence between quasi-exactly solvable problems and the Dicke and Heisenberg type models has been established. It is shown that the Heisenberg isotropic model with two interacting spins can be described by the Pöschl-Teller potential. © 1990.
引用
收藏
页码:365 / 368
页数:4
相关论文
共 50 条
  • [21] The Quasi-Exactly Solvable Problems in Relativistic Quantum Mechanics
    Liu Li-Yan
    Hao Qing-Hai
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (06) : 683 - 685
  • [22] Remarks on quantum deformation of quasi-exactly solvable problems
    Physics und Applied Mathematics Unit, Indian Statistical Institute, Calcutta 700035, India
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 214 (5-6): : 266 - 270
  • [23] Quasi-exactly solvable problems and random matrix theory
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (167):
  • [24] On spectral asymptotic of quasi-exactly solvable quartic potential
    Boris Shapiro
    Miloš Tater
    Analysis and Mathematical Physics, 2022, 12
  • [25] A survey of quasi-exactly solvable systems and spin Calogero-Sutherland models
    Finkel, F
    Gómez-Ullate, D
    González-López, A
    Rodríguez, MA
    Zhdanov, R
    SUPERINTEGRABILITY IN CLASSICAL AND QUANTUM SYSTEMS, 2004, 37 : 173 - 186
  • [26] On spectral asymptotic of quasi-exactly solvable quartic potential
    Shapiro, Boris
    Tater, Milos
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (01)
  • [27] Quasi-exactly solvable spin 1/2 Schrodinger operators
    Finkel, F
    GonzalezLopez, A
    Rodriguez, MA
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 2795 - 2811
  • [28] Inhomogeneous XX spin chains and quasi-exactly solvable models
    Finkel, Federico
    Gonzalez-Lopez, Artemio
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2020, 2020 (09):
  • [29] QUASI-EXACTLY SOLVABLE PROBLEMS IN THE PATH-INTEGRAL FORMALISM
    LUCHT, MW
    JARVIS, PD
    PHYSICAL REVIEW A, 1993, 47 (02): : 817 - 822
  • [30] Periodic Quasi-Exactly Solvable Models
    S. Sree Ranjani
    A. K. Kapoor
    P. K. Panigrahi
    International Journal of Theoretical Physics, 2005, 44 : 1167 - 1176