GENERALIZED MULTIVARIATE MODELS FOR LONGITUDINAL DATA

被引:3
|
作者
PARK, T
WOOLSON, RF
机构
[1] NICHHD,EPN,BETHESDA,MD 20892
[2] UNIV IOWA,DEPT PREVENT MED & ENVIRONM HLTH,IOWA CITY,IA 52242
关键词
LONGITUDINAL DATA; MISSING DATA; REPEATED MEASURES ANALYSIS; SEEMINGLY UNRELATED REGRESSIONS;
D O I
10.1080/03610919208813059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A general class of multivariate models is proposed for unbalanced and incomplete longitudinal data. The proposed model is an extension of the seemingly unrelated regression model (Zellner, 1962). The advantage of this model is discussed regarding its applicability to a larger class of problems and the ease of estimation. The application of the model includes the model for the time varying covariates proposed by Patel (1988) and growth curve models. Two estimation methods are considered; one method is the generalized least squares method based on Zellner's noniterative two-stage estimation and the other is the iterative maximum likelihood estimation method using the EM algorithm (Dempster, Laird, and Rubin, 1977). Simulation studies are conducted to compare the small sample properties of the two estimators.
引用
收藏
页码:925 / 946
页数:22
相关论文
共 50 条
  • [41] SEMIPARAMETRIC LATENT-CLASS MODELS FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA
    Wong, Kin Yau
    Zeng, Donglin
    Lin, D. Y.
    ANNALS OF STATISTICS, 2022, 50 (01): : 487 - 510
  • [42] Longitudinal data analysis of animal growth via multivariate dynamic models
    Barbosa, EP
    Migon, HS
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1996, 25 (02) : 369 - 380
  • [43] Multivariate mix-GEE models for longitudinal data with multiple outcomes
    Liang, Chunhui
    Ma, Wenqing
    Xing, Yanchun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 197
  • [44] Marginalized transition random effect models for multivariate longitudinal binary data
    Ilk, Ozlem
    Daniels, Michael J.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (01): : 105 - 123
  • [45] Forecasting multivariate longitudinal binary data with marginal and marginally specified models
    Asar, Ozgur
    Ilk, Ozlem
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (02) : 414 - 429
  • [46] Multivariate Longitudinal Data Analysis with Mixed Effects Hidden Markov Models
    Raffa, Jesse D.
    Dubin, Joel A.
    BIOMETRICS, 2015, 71 (03) : 821 - 831
  • [47] State-space models for multivariate longitudinal data of mixed types
    Jorgensen, B
    LundbyeChristensen, S
    Song, PXK
    Sun, L
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1996, 24 (03): : 385 - 402
  • [48] An analysis of longitudinal binary data using generalized linear models
    熊林平
    曹秀堂
    徐勇勇
    陆健
    Military Medical Research, 2000, (01) : 69 - 72
  • [49] Variable selection for generalized partially linear models with longitudinal data
    Zhang, Jinghua
    Xue, Liugen
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2473 - 2483
  • [50] LONGITUDINAL DATA-ANALYSIS WITH GENERALIZED LINEAR-MODELS
    ZEGER, SL
    LIANG, KY
    BIOMETRICS, 1985, 41 (02) : 582 - 583