CONSTRUCTING A PERFECT DUALITY IN INFINITE PROGRAMMING

被引:0
|
作者
KORTANEK, KO [1 ]
机构
[1] CARNEGIE MELLON UNIV,MELLON INST SCI,DEPT MATH,PITTSBURGH,PA 15213
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:357 / 372
页数:16
相关论文
共 50 条
  • [31] Robust linear semi-infinite programming duality under uncertainty
    Goberna, M. A.
    Jeyakumar, V.
    Li, G.
    Lopez, M. A.
    MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 185 - 203
  • [32] Duality Theory in Generalized ρ - Univex Fractional Semi-Infinite Programming
    Yang, Yong
    Zhang, QingXiang
    INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 757 - +
  • [33] Robust linear semi-infinite programming duality under uncertainty
    M. A. Goberna
    V. Jeyakumar
    G. Li
    M. A. López
    Mathematical Programming, 2013, 139 : 185 - 203
  • [34] Optimality, scalarization and duality in linear vector semi-infinite programming
    Kanzi, Nader
    Ardekani, Javad Shaker
    Caristi, Giuseppe
    OPTIMIZATION, 2018, 67 (05) : 523 - 536
  • [35] On duality in semi-infinite programming and existence theorems for linear inequalities
    Goberna, MA
    López, MA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 230 (01) : 173 - 192
  • [36] Strong duality and sensitivity analysis in semi-infinite linear programming
    Basu, Amitabh
    Martin, Kipp
    Ryan, Christopher Thomas
    MATHEMATICAL PROGRAMMING, 2017, 161 (1-2) : 451 - 485
  • [37] ε-Optimality and ε-Lagrangian Duality for a Nonconvex Programming Problem with an Infinite Number of Constraints
    Son, T. Q.
    Strodiot, J. J.
    Nguyen, V. H.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 389 - 409
  • [38] Duality for nondifferentiable multiobjective semi-infinite programming with generalized convexity
    Gao, Xiaoyan
    Journal of Theoretical and Applied Information Technology, 2012, 44 (01): : 78 - 85
  • [39] DUALITY GAPS IN SEMI-INFINITE LINEAR-PROGRAMMING - AN APPROXIMATION PROBLEM
    KARNEY, DF
    MATHEMATICAL PROGRAMMING, 1981, 20 (02) : 129 - 143
  • [40] Duality for semi-definite and semi-infinite programming with equality constraints
    Li, SJ
    Yang, XQ
    Teo, KL
    Optimization And Control With Applications, 2005, 96 : 115 - 125