TOPOLOGICAL MATTER, INTEGRABLE MODELS AND FUSION RINGS

被引:12
|
作者
NEMESCHANSKY, D
WARNER, NP
机构
[1] Physics Department, University of Southern California, University Park, Los Angeles
关键词
D O I
10.1016/0550-3213(92)90522-D
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We show how topological G(k)/G(k) models can be embedded into the topological matter models that are obtained by perturbing the twisted N = 2 supersymmetric, hermitian symmetric, coset models. In particular, this leads to an embedding of the fusion ring of G as a sub-ring of the perturbed, chiral primary ring. The perturbation of the twisted N = 2 model that leads to the fusion ring is also shown to lead to an integrable N = 2 supersymmetric field theory when the untwisted N = 2 superconformal field theory is perturbed by the same operator and its hermitian conjugate.
引用
收藏
页码:241 / 264
页数:24
相关论文
共 50 条
  • [41] TOPOLOGICAL RINGS WITH INVOLUTION
    SLINKO, AM
    RUSSIAN MATHEMATICAL SURVEYS, 1986, 41 (05) : 167 - 168
  • [42] TOPOLOGICAL RINGS OF QUOTIENTS
    SCHELTER, W
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1974, 26 (05): : 1228 - 1233
  • [43] ON EMBEDDING OF TOPOLOGICAL RINGS
    LUEDEMAN, JK
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 288 - &
  • [44] BOUNDED TOPOLOGICAL RINGS
    WEISS, E
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (02) : 143 - 143
  • [45] REVERSIBILITY IN TOPOLOGICAL RINGS
    ANDRUNAK.VA
    ARNAUTOV, VI
    DOKLADY AKADEMII NAUK SSSR, 1966, 170 (04): : 755 - &
  • [46] Hamiltonian models for topological phases of matter in three spatial dimensions
    Williamson, Dominic J.
    Wang, Zhenghan
    ANNALS OF PHYSICS, 2017, 377 : 311 - 344
  • [47] TOPOLOGICAL ANALYSIS OF STEKLOV INTEGRABLE CASES
    BOGOYAVLENSKII, OI
    IVAKH, GF
    RUSSIAN MATHEMATICAL SURVEYS, 1985, 40 (04) : 161 - 162
  • [48] Integrable systems admitting topological solitons
    Ward, RS
    Winn, AE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (13): : L261 - L266
  • [49] Topological string theory and integrable structures
    Klemm, A
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (7-8): : 720 - 769
  • [50] Topological aspects of completely integrable foliations
    Pinheiro, Susana
    Reis, Helena
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 : 415 - 433