BOUNDS RELATING GENERALIZED DOMINATION PARAMETERS

被引:3
|
作者
HENNING, MA
SWART, HC
机构
[1] UNIV NATAL,FAC SCI MATH & APPL MATH,KING GEORGE V AVE,DURBAN 4001,SOUTH AFRICA
[2] UNIV NATAL,PIETERMARITZBURG 3200,SOUTH AFRICA
关键词
D O I
10.1016/0012-365X(93)90567-D
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The domination number gamma(G) and the total domination number gamma(t)(G) of a graph G are generalized to the K(n)-domination number gamma(Kn)(G) and the total K(n)-domination number gamma(Kn)t(G) for n greater-than-or-equal-to 2, where gamma(G) = gamma(K2)(G) and gamma(t)(G) = gamma(K2)(G). K(n)-connectivity is defined and, for every integer n greater-than-or-equal-to 2, the existence of a K(n)-connected graph G of order at least n + 1 for which gamma(Kn)(G) + gamma(Kn)t(G) = ((3n - 2)/n2)p(G) is established. We conjecture that, if G is a K(n)-connected graph of order at least n + 1, then gamma(Kn)(G) + gamma(Kn)t(G) less-than-or-equal-to ((3n - 2)/n2)p(G). This conjecture generalizes the result for n = 2 of Allan, Laskar and Hedetniemi. We prove the conjecture for n = 3. Further, it is shown that if G is a K 3-connected graph of order at least 4 that satisfies the condition that, for each edge e of G, G - e contains at least one K3-isolated vertex, then gamma(K)3(G) + gamma(K3)t(G) less-than-or-equal-to (3p)/4 and we show that this bound is best possible.
引用
收藏
页码:93 / 105
页数:13
相关论文
共 50 条
  • [31] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [32] Relating the Outer-Independent Total Roman Domination Number with Some Classical Parameters of Graphs
    Cabrera Martinez, Abel
    Kuziak, Dorota
    Yero, Ismael G.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (03)
  • [33] NP-completeness of some generalized hop and step domination parameters in graphs
    Asemian, Ghazaleh
    Rad, Nader Jafari
    Tehranian, Abolfazl
    Rasouli, Hamid
    [J]. COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023,
  • [34] BOUNDS ON THE DOMINATION NUMBER OF PERMUTATION GRAPHS
    Gu, Weizhen
    Wash, Kirsti
    [J]. JOURNAL OF INTERCONNECTION NETWORKS, 2009, 10 (03) : 205 - 217
  • [35] General Bounds on Limited Broadcast Domination
    Caceres, Jose
    Hernando, Carmen
    Mora, Merce
    Pelayo, Ignacio M.
    Luz Puertas, Maria
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (02):
  • [36] Bounds for independent Roman domination in graphs
    Department of Mathematics, Shahrood University of Technology, Shahrood, Iran
    不详
    不详
    [J]. J. Comb. Math. Comb. Comp., (351-365):
  • [37] Bounds on the domination number of Kneser graphs
    Ostergard, Patric R. J.
    Shao, Zehui
    Xu, Xiaodong
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 197 - 205
  • [38] Improved bounds on the domination number of a tree
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 177 : 88 - 94
  • [39] Upper Bounds on the Total Domination Number
    Haynes, Teresa W.
    Henning, Michael A.
    [J]. ARS COMBINATORIA, 2009, 91 : 243 - 256
  • [40] Bounds on the forcing domination number of graphs
    Karami, H.
    Sheikholeslami, S. M.
    Toomanian, M.
    [J]. UTILITAS MATHEMATICA, 2010, 83 : 171 - 178