SYNTHESIS OF LOW-BAND-GAP POLYMERS - A CHALLENGE FOR ORGANIC CHEMISTS

被引:23
|
作者
HANACK, M
DURR, K
LANGE, A
BARCINA, JO
POHMER, J
WITKE, E
机构
[1] Institut für Organische Chemie, D-72076 Tübingen
关键词
D O I
10.1016/0379-6779(94)03256-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stable intrinsic semiconductors, which exhibit conductivities of 0.1 S/cm without any doping process can be easily prepared by using our ''shish-kebab'' approach. Hereby stacked transition metal macrocycles [MacM(L)](n). with M e.g. Fe, Ru, Os and Mac = phthalocyanine (Pc) or 2,3-naphthalocyanine (2,3-Nc) are used. The bridging ligands (L) are special heteroaromatic systems, e.g. s-tetrazine (tz), substituted tetrazines, triazine (tri), substituted triazines, but also special organic dinitriles, e.g. tetrafluoroterephthalic acid dinitrile, fumarodinitrile, dicyanoacetylene, and dicyane. We report about the preparation and the characterization of the corresponding transition metal complexes [MacM(L)](n). The intrinsic conductivities of all these compounds are a result of the low oxidation potential of the bridging ligands and due to the low lying LUMO in the corresponding bridged systems [MacM(L)](n). The electrical and physical properties, especially the UV- and Mossbauer spectra (for the corresponding iron compounds) for the bridged macrocyclic metal complexes are discussed in respect to the intrinsic semiconducting properties of these compounds.
引用
收藏
页码:2275 / 2278
页数:4
相关论文
共 50 条
  • [41] THE VIBRATIONAL PROPERTIES AND DEFECT STRUCTURES IN VINYLENE-LINKED LOW-BAND-GAP CONDUCTING POLYMERS
    ECKHARDT, H
    BAUGHMAN, RH
    BUISSON, JP
    LEFRANT, S
    CUI, CX
    KERTESZ, M
    SYNTHETIC METALS, 1991, 43 (1-2) : 3413 - 3418
  • [42] Computational design of low-band-gap double perovskites
    Berger, Robert F.
    Neaton, Jeffrey B.
    PHYSICAL REVIEW B, 2012, 86 (16)
  • [43] NEW PROCESSABLE LOW-BAND-GAP, CONJUGATED POLYHETEROCYCLES
    POMERANTZ, M
    CHALONERGILL, B
    HARDING, LO
    TSENG, JJ
    POMERANTZ, WJ
    SYNTHETIC METALS, 1993, 55 (2-3) : 960 - 965
  • [44] Synthesis of 3,4-diphenyl-substituted poly(thienylene vinylene) low-band-gap polymers via the dithiocarbamate route
    Henckens, A
    Colladet, K
    Fourier, S
    Cleij, TJ
    Lutsen, L
    Gelan, J
    Vanderzande, D
    MACROMOLECULES, 2005, 38 (01) : 19 - 26
  • [45] Click synthesis of low band gap semiconducting polymers
    Fujita, Hiroyuki
    Michinobu, Tsuyoshi
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [46] Synthesis and characterization of low-band-gap poly(thienylenevinylene) derivatives for polymer solar cells
    Jang, Soo-Young
    Lim, Bogyu
    Yu, Byung-Kwan
    Kim, Juhwan
    Baeg, Kang-Jun
    Khim, DongYoon
    Kim, Dong-Yu
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (32) : 11822 - 11830
  • [47] Synthesis of low band gap polymers: Studies in polyisothianaphthene
    Hagan, AJ
    Moratti, SC
    Sage, IC
    SYNTHETIC METALS, 2001, 119 (1-3) : 147 - 148
  • [48] Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells
    Velusamy, M
    Thomas, KRJ
    Lin, JT
    Hsu, YC
    Ho, KC
    ORGANIC LETTERS, 2005, 7 (10) : 1899 - 1902
  • [49] Novel low-band-gap conjugated polymers based on benzotrithiophene derivatives for bulk heterojunction solar cells
    M. L. Keshtov
    S. A. Kuklin
    V. S. Kochurov
    N. A. Radychev
    Zhiyuan Xie
    A. R. Khokhlov
    Doklady Chemistry, 2015, 464 : 231 - 235
  • [50] Morphology Related Photodegradation of Low-Band-Gap Polymer Blends
    Wang, Xiao
    Egelhaaf, Hans-Joachim
    Mack, Hans-Georg
    Azimi, Hamed
    Brabec, Christoph J.
    Meixner, Alfred J.
    Zhang, Dai
    ADVANCED ENERGY MATERIALS, 2014, 4 (17)