PREDICTION OF EFFECTIVE THERMAL CONDUCTIVITY OF POLYMER COMPOSITES USING AN ARTIFICIAL NEURAL NETWORK APPROACH

被引:4
|
作者
Bhoopal, R. S. [1 ]
Sharma, P. K. [1 ]
Kumar, Sajjan [1 ]
Pandey, Alok [2 ]
Beniwal, R. S. [3 ]
Singh, Ramvir [1 ]
机构
[1] Univ Rajasthan, Dept Phys, Thermal Phys Lab, Jaipur 302055, Rajasthan, India
[2] Global Inst Technol, Dept Elect & Commun, Jaipur 302022, Rajasthan, India
[3] CSIR, Natl Inst Sci Commun & Informat Resources, New Delhi 110012, India
关键词
polymer-matrix composites; artificial neural network; effective thermal conductivity;
D O I
10.1615/SpecialTopicsRevPorousMedia.v3.i2.30
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The effective thermal conductivity (ETC) of polymer composites is studied using artificial neural networks. Artificial neural networks are a form of artificial intelligence, which attempt to mimic the function of the human brain and nervous system. Artificial neural networks provide a great deal of promise but they suffer from a number of shortcomings, such as knowledge extraction, extrapolation, and uncertainty. This paper presents the use of the artificial neural network for prediction of ETC of metal-filled polymer composites due to their increasing importance in many fields of engineering applications and technological developments. Artificial neural networks models are based on a radial basis with the training function: the more efficient design radial basis network (NEWRB) and the feedforward backpropagation network with training functions conjugate gradient with Powell-Beale restarts, Levenberg-Marquardt, one-step secant, random order incremental, and resilient backpropagation. The volume fraction and thermal conductivity of continuous (matrix) and dispersed (filler) phases are input parameters to predict the ETC. The resultant predictions of ETC using the different models of artificial neural networks agree well with the available experimental data.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 50 条
  • [1] Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach
    Singh, Ramvir
    Bhoopal, R. S.
    Kumar, Sajjan
    [J]. BUILDING AND ENVIRONMENT, 2011, 46 (12) : 2603 - 2608
  • [2] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Ammar H. Elsheikh
    Swellam W. Sharshir
    A. S. Ismail
    Ravishankar Sathyamurthy
    Talaat Abdelhamid
    Elbager M. A. Edreis
    A. E. Kabeel
    Zhang Haiou
    [J]. SN Applied Sciences, 2020, 2
  • [3] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Ismail, A. S.
    Sathyamurthy, Ravishankar
    Abdelhamid, Talaat
    Edreis, Elbager M. A.
    Kabeel, A. E.
    Haiou, Zhang
    [J]. SN APPLIED SCIENCES, 2020, 2 (02)
  • [4] Prediction of effective thermal conductivity of cellular and polymer composites
    Singh, Ramvir
    Sharma, P. K.
    Bhoopal, R. S.
    Verma, L. S.
    [J]. INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2011, 49 (05) : 344 - 349
  • [5] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    [J]. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [6] Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method
    Lee, Jong-Han
    Lee, Jong-Jae
    Cho, Baik-Soon
    [J]. INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2012, 6 (03) : 177 - 186
  • [7] Effective Prediction of Thermal Conductivity of Concrete Using Neural Network Method
    Jong-Han Lee
    Jong-Jae Lee
    Baik-Soon Cho
    [J]. International Journal of Concrete Structures and Materials, 2012, 6 : 177 - 186
  • [8] Prediction of thermal conductivity detection response factors using an artificial neural network
    Jalali-Heravi, M
    Fatemi, MH
    [J]. JOURNAL OF CHROMATOGRAPHY A, 2000, 897 (1-2) : 227 - 235
  • [9] PREDICTION OF THE EFFECTIVE THERMAL CONDUCTIVITY OF FIBER REINFORCED COMPOSITES USING A MICROMECHANICAL APPROACH
    Sayyidmousavi, A.
    Bougherara, H.
    Falahatgar, S. R.
    Fawaz, Z.
    [J]. JOURNAL OF MECHANICS, 2019, 35 (02) : 179 - 185
  • [10] Effective thermal conductivity of polymer composites
    Singh, Ramvir
    Sharma, Pracleep
    [J]. ADVANCED ENGINEERING MATERIALS, 2008, 10 (04) : 366 - 370