PHASE-TRANSITION IN THE GENERALIZED FIBONACCI QUANTUM ISING-MODELS

被引:22
|
作者
BENZA, VG
KOLAR, M
ALI, MK
机构
[1] IST NAZL FIS NUCL,I-20133 MILAN,ITALY
[2] UNIV LETHBRIDGE,DEPT PHYS,LETHBRIDGE T1K 3M4,ALBERTA,CANADA
来源
PHYSICAL REVIEW B | 1990年 / 41卷 / 13期
关键词
D O I
10.1103/PhysRevB.41.9578
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We prove that quantum Ising models, built on the scheme of generalized Fibonacci chains, undergo a magnetic phase transition whenever the roots of the characteristic equation of the associated substitution rules satisfy the Pisot-Vijayaraghavan (PV) property that only one root in absolute value is greater than one. The proof can be generalized in a straightforward manner to arbitrary two-letter substitution rules. We also conjecture that these models behave as random systems if the mentioned roots fail to satisfy the PV property. © 1990 The American Physical Society.
引用
收藏
页码:9578 / 9580
页数:3
相关论文
共 50 条