Fractal (fractional) Brownian motion

被引:7
|
作者
Chow, Winston C. [1 ]
机构
[1] George Mason Univ, Dept Computat & Data Sci, MS 6A2,4400 Univ Dr, Fairfax, VA 22030 USA
关键词
almost surely; Bayesian estimation; Brownian motion; fractal; fractal Brownian motion; fractional Brownian motion; fractal dimension; fractal Gaussian noise; fractional Gaussian noise; functional; Hausdorff-Besicovitch dimension; Hurst parameter; Kalman filter; loss function; measurable; quadratic mean integral; sample path integral; self-similar; wide-sense stationary;
D O I
10.1002/wics.142
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fractal Brownian motion, also called fractional Brownian motion (fBm), is a class of stochastic processes characterized by a single parameter called the Hurst parameter, which is a real number between zero and one. fBm becomes ordinary standard Brownian motion when the parameter has the value of onehalf. In this manner, it generalizes ordinary standard Brownian motion. Here, we precisely define fBm, compare it with Brownian motion, and describe its unique mathematical and statistical properties, including fractal behavior. Ideas of how such properties make these stochastic processes useful models of natural or manmade systems in life are described. We show how to use these processes as unique random noise representations in state equation models of some systems. We finally present statistical state equation estimation techniques where such processes replace traditional Gaussian white noises. (C) 2011 John Wiley & Sons, Inc.
引用
收藏
页码:149 / 162
页数:14
相关论文
共 50 条
  • [21] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [22] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [23] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [24] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [25] Mixed fractional Brownian motion
    Cheridito, P
    BERNOULLI, 2001, 7 (06) : 913 - 934
  • [26] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [27] Arbitrage with fractional Brownian motion
    Rogers, LCG
    MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [28] On the Generalized Fractional Brownian Motion
    Zili M.
    Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [29] Combinatorial fractal Brownian motion model
    朱炬波
    梁甸农
    Science China Technological Sciences, 2000, (03) : 254 - 262
  • [30] FRACTAL DIMENSIONALITY OF BROWNIAN-MOTION
    RAPAPORT, DC
    PHYSICAL REVIEW LETTERS, 1984, 53 (20) : 1965 - 1965