EXISTENCE OF BACKWARD GLOBAL-SOLUTIONS TO NONLINEAR DISSIPATIVE WAVE-EQUATIONS

被引:0
|
作者
CARPIO, A
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let OMEGA be a bounded smooth domain of R(n). We prove existence of global solutions, i. e. solutions defined for all t is-an-element-of R, for dissipative wave equations of the form: u''-DELTAu+\u'\p-1 u'=0 in (- infinity, infinity) x OMEGA with Dirichlet homogeneous boundary conditions, where 1 < p < infinity if n less-than-or-equal-to 2 or 1 < p less-than-or-equal-to (n + 2)/(n - 2) if n > 2. More precisely, for every solution psi (with constant sign if 1 < p < 2) of an elliptic problem we prove the existence of a solution growing like \t\(p/(p-1)) when t --> - infinity. When OMEGA is unbounded the same existence result holds for p greater-than-or-equal-to 2.
引用
收藏
页码:803 / 808
页数:6
相关论文
共 50 条