EXISTENCE OF GLOBAL-SOLUTIONS TO SOME NONLINEAR DISSIPATIVE WAVE-EQUATIONS

被引:0
|
作者
CARPIO, A
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a smooth bounded domain. We prove existence of global solutions, i.e., solutions defined for all t epsilon R, for dissipative wave equations of the form: u'' - Delta u + \u'\(p-1) u' = 0 in Omega x (-infinity, infinity), p > 1, with Dirichlet boundary conditions. When Omega is unbounded the same existence result holds for p greater than or equal to 2.
引用
收藏
页码:471 / 488
页数:18
相关论文
共 50 条