TELEPARALLEL THEORY OF (2+1)-DIMENSIONAL GRAVITY

被引:23
|
作者
KAWAI, T
机构
[1] Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558
来源
PHYSICAL REVIEW D | 1993年 / 48卷 / 12期
关键词
D O I
10.1103/PhysRevD.48.5668
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A theory of (2+1)-dimensional gravity is developed on the basis of the Weitzenbock space-time characterized by the metricity condition and by the vanishing curvature tenser. The fundamental gravitational field variables are dreibein fields and the gravity is attributed to the torsion. The most general gravitational Lagrangian density quadratic in the torsion tenser is given by L(G)=alpha t(klm)t(klm)+beta v(k)v(k)+gamma a(klm). Here, t(klm), v(k), and a(klm) are irreducible components of the torsion tensor, and a, P, and gamma are real parameters. A condition is imposed on alpha and beta by the requirement that the theory has a correct Newtonian limit. A static circularly symmetric exact solution of the gravitational field equation in the vacuum is given. It gives space-times quite different from each other, according to the signature of ap. These space-times have event horizons, if and only if cr(3 alpha+4 beta)<0. Singularity structures of these space-times are also examined.
引用
收藏
页码:5668 / 5675
页数:8
相关论文
共 50 条
  • [41] Quantum modular group in (2+1)-dimensional gravity
    [J]. Acta Phys Hung New Ser Heavy Ion Phys, 4 (361-367):
  • [42] HOMOGENEOUS (2+1)-DIMENSIONAL GRAVITY IN THE ASHTEKAR FORMULATION
    BARBERO, GJF
    VARADARAJAN, M
    [J]. NUCLEAR PHYSICS B, 1995, 456 (1-2) : 355 - 376
  • [43] EXACT QUANTUM SCATTERING IN 2+1 DIMENSIONAL GRAVITY
    CARLIP, S
    [J]. NUCLEAR PHYSICS B, 1989, 324 (01) : 106 - 122
  • [44] THERMODYNAMICS OF EVENT HORIZONS IN (2+1)-DIMENSIONAL GRAVITY
    REZNIK, B
    [J]. PHYSICAL REVIEW D, 1992, 45 (06): : 2151 - 2154
  • [45] Causal diamonds in (2+1)-dimensional quantum gravity
    Andrade e Silva, Rodrigo
    Jacobson, Ted
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)
  • [46] Quantum modular group in (2+1)-dimensional gravity
    Carlip, S
    Nelson, JE
    [J]. PHYSICAL REVIEW D, 1999, 59 (02)
  • [47] (2+1)-dimensional gravity in Weyl integrable spacetime
    Madriz Aguilar, J. E.
    Romero, C.
    Fonseca Neto, J. B.
    Almeida, T. S.
    Formiga, J. B.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (21)
  • [48] Teleparallel gauge theory of gravity
    Maluf, Jose W.
    Faria, Felipe F.
    [J]. ANNALEN DER PHYSIK, 2012, 524 (6-7) : 366 - 370
  • [49] SCATTERING OF PARTICLES WITH SPIN IN 2+1 DIMENSIONAL GRAVITY
    FALBOKENKEL, MK
    MANSOURI, F
    [J]. PHYSICS LETTERS B, 1993, 309 (1-2) : 28 - 32
  • [50] ASHTEKAR FORMULATION OF (2+1)-DIMENSIONAL GRAVITY ON A TORUS
    MANOJLOVIC, N
    MIKOVIC, A
    [J]. NUCLEAR PHYSICS B, 1992, 385 (03) : 571 - 586