THE CRITICAL STRESS IN A DISCRETE PEIERLS-NABARRO MODEL

被引:43
|
作者
OHSAWA, K [1 ]
KOIZUMI, H [1 ]
KIRCHNER, HOK [1 ]
SUZUKI, T [1 ]
机构
[1] UNIV TOKYO,INST IND SCI,MINATO KU,TOKYO 106,JAPAN
基金
日本学术振兴会;
关键词
D O I
10.1080/01418619408242216
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Peierls stress is calculated for a discrete Peierls-Nabarro model of a dislocation. Unlike the original continuum model where a continuous distribution of infinitesimal dislocations was considered, the discreteness of the slip plane is maintained throughout the calculation, and the Peierls stress tau(p) is determined as the critical applied stress beyond which the stability of the system breaks. Results for three types of interatomic shear potential are well approximated by the relation tau(p)/Goc exp(- Ah/b), as predicted by the continuum model, G being the shear modulus, h the spacing between slip planes, b the length of the Burgers vector and A a constant depending on the potentials. The magnitude of tau(p) of the discrete model is larger than that of the continuum model for the same sinusoidal potential. Long-range potentials give low tau(p) although they are still larger than experimental values.
引用
下载
收藏
页码:171 / 181
页数:11
相关论文
共 50 条
  • [31] Improvement of nonlocal Peierls-Nabarro models
    Liu, Guisen
    Cheng, Xi
    Wang, Jian
    Chen, Kaiguo
    Shen, Yao
    COMPUTATIONAL MATERIALS SCIENCE, 2017, 131 : 69 - 77
  • [32] Peierls-Nabarro modelling of dislocations in diopside
    Metsue, Arnaud
    Carrez, Philippe
    Denoual, Christophe
    Mainprice, David
    Cordier, Patrick
    PHYSICS AND CHEMISTRY OF MINERALS, 2010, 37 (10) : 711 - 720
  • [33] EXACT DETERMINATION OF THE PEIERLS-NABARRO FREQUENCY
    BOESCH, R
    WILLIS, CR
    PHYSICAL REVIEW B, 1989, 39 (01): : 361 - 368
  • [34] The Peierls-Nabarro model as a limit of a Frenkel-Kontorova model
    Fino, A. Z.
    Ibrahim, H.
    Monneau, R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) : 258 - 293
  • [35] The topological origin of the Peierls-Nabarro barrier
    Hocking, Brook J.
    Ansell, Helen S.
    Kamien, Randall D.
    Machon, Thomas
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [36] REVISIT OF THE PEIERLS-NABARRO MODEL FOR EDGE DISLOCATIONS IN HILBERT SPACE
    Gao, Yuan
    Liu, Jian-Guo
    Luo, Tao
    Xiang, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 3177 - 3207
  • [37] Discrete Solitary Waves in Systems with Nonlocal Interactions and the Peierls-Nabarro Barrier
    Jenkinson, M.
    Weinstein, M. I.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (01) : 45 - 94
  • [38] Existence and uniqueness of solutions to the Peierls-Nabarro model in anisotropic media
    Gao, Yuan
    Scott, James M.
    NONLINEARITY, 2024, 37 (02)
  • [39] From the Peierls-Nabarro model to the equation of motion of the dislocation continuum
    Patrizi, Stefania
    Sangsawang, Tharathep
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
  • [40] Derivation of Orowan's Law from the Peierls-Nabarro Model
    Monneau, Regis
    Patrizi, Stefania
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (10) : 1887 - 1911