THE COEFFICIENTS OF THE INVERSE OF AN ODD CONVEX FUNCTION

被引:6
|
作者
LIBERA, RJ
ZLOTKIEWICZ, EJ
机构
[1] UNIV DELAWARE,DEPT MATH SCI,NEWARK,DE 19716
[2] UNIWERSYTET MARII CURIE SKLODOWSKIEJ,INST MATEMATYKI,PL-20031 LUBIN,POLAND
关键词
D O I
10.1216/RMJ-1985-15-3-677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:677 / 683
页数:7
相关论文
共 50 条
  • [31] On the Coefficients of Quasiconformality for Convex Functions
    Avkhadiev F.G.
    Wirths K.-J.
    [J]. Lobachevskii Journal of Mathematics, 2010, 31 (4) : 323 - 325
  • [32] ON α-CONVEX FUNCTIONS WITH MISSING COEFFICIENTS
    杨定恭
    [J]. 苏州大学学报(自然科学版), 1990, (02) : 124 - 130
  • [33] Convex functions and Fourier coefficients
    Niculescu, Constantin P.
    Roventa, Ionel
    [J]. POSITIVITY, 2020, 24 (01) : 129 - 139
  • [34] INVERSE PROBLEM FOR CONVEX BODIES
    MAJDA, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (05) : 1377 - 1378
  • [35] Convex inverse scale spaces
    Frick, Klaus
    Scherzer, Otmar
    [J]. SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, PROCEEDINGS, 2007, 4485 : 313 - +
  • [36] Convex Optimisation for Inverse Kinematics
    Yenamandra, Tarun
    Bernard, Florian
    Wang, Jiayi
    Mueller, Franziska
    Theobalt, Christian
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 318 - 327
  • [37] THE INVERSE PROBLEM OF ONE CLASS OF DIRAC OPERATORS WITH DISCONTINUOUS COEFFICIENTS BY THE WEYL FUNCTION
    Latifova, Aygun R.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2005, 22 (30): : 65 - 70
  • [38] A noniterative solution to the inverse Ising problem using a convex upper bound on the partition function
    Sano, Takashi
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (02):
  • [39] Lehmer's problem for polynomials with odd coefficients
    Borwein, Peter
    Dobrowolski, Edward
    Mossinghoff, Michael J.
    [J]. ANNALS OF MATHEMATICS, 2007, 166 (02) : 347 - 366
  • [40] Odd coefficients of weakly holomorphic modular forms
    Ahlgren, Scott
    Boylan, Matthew
    [J]. MATHEMATICAL RESEARCH LETTERS, 2008, 15 (2-3) : 409 - 418